
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005 695

Evolving Assembly Programs: How Games
Help Microprocessor Validation

Fulvio Corno, Ernesto Sánchez, and Giovanni Squillero

Abstract—Core War is a game where two or more programs,
called warriors, are executed in the same memory area by a time-
sharing processor. The final goal of each warrior is to crash the
others by overwriting them with illegal instructions. The game was
popularized by A. K. Dewdney in his Scientific American column
in the mid-1980s. In order to automatically devise strong warriors,

GP, a test program generation algorithm, was extended with the
ability to assimilate existing code and to detect clones; further-
more, a new selection mechanism for promoting diversity inde-
pendent from fitness calculations was added. The evolved warriors
are the first machine-written programs ever able to become King
of the Hill (champion) in all four main international Tiny Hills.
This paper shows how playing Core War may help generate ef-
fective test programs for validation and test of microprocessors.
Tackling a more mundane problem, the described techniques are
currently being exploited for the automatic completion and refine-
ment of existing test programs. Preliminary experimental results
are reported.

Index Terms—Automatic programming, Core War, evolutionary
program generation, games, microprocessor testing.

I. INTRODUCTION

THE INCREDIBLE advances in microelectronics tech-
nologies that allow semiconductor manufacturers to

deliver chips with ever-shrinking form factors and ever-in-
creasing switching frequencies, enabled hardware architects
to develop extremely complex integrated circuits and required
the invention of sophisticated architectures to be able to best
exploit the available silicon and computing power.

Only a few years ago, testing and verification costs repre-
sented a small percentage of the total cost in the whole manu-
facturing budget, but these costs approached 70%. These prob-
lems are especially critical in the case of microprocessors. Such
devices contain extremely complex architectures taking full ad-
vantage of the latest technological advances, and competitive
pressure enforces this trend.

This paper tackles the problem of automatic test program
generation for microprocessor test and validation. The innova-
tive approach consists in using competitive games to emulate the
complexity of real-world problems: in particular, a game where
the goal is to produce assembly-level programs, and these pro-
grams have to exploit very peculiar characteristics of a (multi-
threaded) execution engine, and execution times and program
length are limited resources.
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The goal of this paper is twofold. We seek to explain the sim-
ilarity between the microprocessor validation and test problem
and the chosen game, and to justify the reasons why an optimizer
devised for winning a game can be successful in a different and
more down to earth domain.

This paper is organized as follows. Section II details the test
program generation problem. Section III introduces the game,
motivating the choice and identifying similarities with micro-
processor validation and test. Section IV describes the original

GP algorithm; readers already familiar with GP may skip this
section. New algorithms and strategies that empowered the GP
are described in detail in Section V, while Section VI describes
the experimental evaluation and comments on the performance
reached by GP-generated warriors. Section VII concludes this
paper, and sketches the initial promising results observed on real
microprocessor test program generation. Section VIII outlines
some possible future directions of the research.

II. AUTOMATIC TEST PROGRAM GENERATION

Chips of a hundred million transistors and running at clock
frequencies of several gigahertz pose exceptional design chal-
lenges [1]. Designers are currently exploiting these chips in two
directions: building systems on chip (SOC) or building more
powerful microprocessors. In a SOC [25], the available on-chip
area is used to integrate more and more functions (subsystems)
in the same chip, resulting in a net decrease of the number of
different chips in a system (and thus of the system cost) and
in faster communications between subsystems, since no slow
off-chip data exchange is needed. On the other hand, modern
microprocessors [30], on which this paper focuses, use the avail-
able silicon headroom to increase the number of instructions
executed per clock cycle, through the adoption of highly par-
allel computation and the integration of on-chip cache memo-
ries. In particular, higher parallelism is achieved by replicating
several execution units, each capable of executing a subset of
the available instructions, and by letting an instruction sched-
uler assign to different units the assembly instructions to be ex-
ecuted in the program. In this execution model, instructions are
often executed speculatively (i.e., an instruction is executed be-
fore knowing if it needs to be executed, usually because it is
beyond a conditional branch that has not been evaluated yet)
and their results might be invalid (i.e., the computed value de-
pends on the result of other instructions executed in parallel,
and if it turns out to be invalid the instruction must be re-ex-
ecuted). Exact details of instruction execution (i.e., predicting
the execution unit to which an instruction will be assigned, or
predicting the completion time of an instruction) is becoming
nearly impossible, due to the speculative nature of execution,
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to the latency time of the memory subsystem, whose values de-
pend on the current status of the caches, and to the interrupts or
exceptions that can happen during the normal execution flow,
to service external peripherals or to handle context switches or
demand paging.

These kinds of advanced architectures are very complex to
conceive and design, but even more complex to validate and test.
Validation [11], [29] is a step in the design process where the de-
sign is checked against its specification. In the case of a micro-
processor, the specification is usually expressed by the “Instruc-
tion Set Architecture,” i.e., the intended behavior of all assembly
instructions, and validation consists in verifying that the correct
result is always obtained for any sequence of valid instructions.
Test [10], [19] is the final step, where a just-produced micropro-
cessor chip is tested to check possible production errors, i.e.,
defects in the production process (diffusion, packaging, han-
dling, soldering, etc.). Also, in this case, the microprocessor
under test must be shown to execute all instructions correctly,
and to operate within the timing constraints given by the spec-
ification. Validation and test are related activities, because they
both consist in checking the result of a step in the design process
(the circuit architecture, or the produced chip) against the spec-
ifications, aiming at detecting possible errors (design errors in
validation, production errors in test). Manufacturers report that
more than 60% of the chip cost can be attributed to validation
and test, and it is evident that the quality of the shipped products
is related directly to the quality of the checks during validation
and test. As an example, the famous Pentium FDIV bug was not
discovered due to insufficient validation [22].

While single subcomponents in the microprocessor may be
validated or tested individually (by accessing their inputs and
outputs directly through the simulator or through specific test
buses built in the chip, and by applying specific test patterns),
the most critical verification level is the system integration test,
where the whole processor is checked. At this level, the only
practical possibility is to let the processor execute carefully
crafted test programs. A test program is a valid sequence of
assembly instructions, that is fed to the processor through its
normal execution instruction mechanism (i.e., the processor
executes it as it would execute any other “normal” program),
and whose goal is to uncover any possible design or production
flaw in the processor under test.

The quality of the validation and test process, thus, relies
heavily on the quality of the utilized test programs. We should
also point out that, in this context, the quality of a test program
is measured by its “coverage” of the design errors or production
defects, by its code size, and by the text execution time.

When considering the problem of test program generation,
we should recall the complexity of current microprocessors: ar-
chitectural solutions are pipelined, superscalar, speculative, hy-
perthreaded, emulate several virtual processors, rely on several
memory caching layers, and new features appear every quarter.
Each of these keywords implies a complexity degree in the pro-
cessor architecture, and test programs should be able to test all
these advanced features. Incidentally, it makes no sense to test
individual instructions, since the context in which an instruction
executes (i.e., its preceding and following instructions) modify
the processor state and modify the execution path taken by the

instruction. This observation rules out exhaustive test programs,
since developing and executing all possible sequences of in-
structions is combinatorially unpractical.

Manual generation of test programs is also impossible with
current processors, due to the number of specific cases and in-
struction interactions. Manually written programs are useful to
check some specific behavior that is known to be critical and is
known to be difficult to be covered by test programs built with
other techniques. In particular, one class of manually developed
test programs is that of systematic test programs that execute an
array of similar operations with small variations (e.g., to test an
arithmetic unit with different values of the operands).

The only general solution for a high-quality test program is
to devise an automatic generation method. In 2002, a new test
program generation algorithm called GP [32] was proposed;
later, it has been shown to be very effective for testing simple
microprocessors like the i8051 [14], medium-size ones like the
SPARC v8 [15], and even an Intel® Pentium® 4 microprocessor
[24]. GP is now a general and versatile assembly-level test pro-
gram generator, and may be used for different microprocessors
as long as their Instruction Set Architecture is described in the
form of an instruction library, and as long as a fitness function
can be defined and computed [31].

As with all optimization approaches, taking the initial
GP algorithm and improving it until it generates useful

and high-quality test programs for complex microprocessors
requires several intermediate research steps. However, the
difference between simple processors (where little or no paral-
lelism is present) and current chips prevents generalizing the
results. Improving the GP performance on simple proces-
sors simply does not produce improvements to the results on
complex ones, due to the intrinsically different architecture.
On the other hand, developing GP improvements or testing
new techniques directly on complex processors is impossible:
the computational effort required to simulate the processor
models and extract the results coupled with their architectural
complexity, would make an experimental analysis of proposed
innovations practically infeasible.

A complementary approach was used to reach the same goal:
instead of fighting with the barrier between simple processors
(easy to test, but of no practical use) and complex ones (the real
target, but unusable during algorithm development), find a dif-
ferent problem, with characteristics similar to microprocessor
verification, but with a simpler definition and with a faster exe-
cution engine for fitness computation.

A game whose high-level characteristics resemble clearly the
arduous microprocessor test program generation problem is the
Core War game popularized by Dewdney [20]. In Core War, two
or more programs are executed in the same memory area by a
timesharing processor, and the goal of each program is to crash
the others by having them execute illegal instructions. Programs
are written in an assembly language called redcode.

The redcode interpreter is fast enough to simulate the battles
fought by two programs in seconds, and is perfectly suitable to
quickly compute the metrics needed by a fitness function.

A set of GP strategies was optimized to generate a strong
program for the Core War game (in Core War terminology, “a
strong warrior”). The simple definition of the problem, the quick
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evaluation, the availability of Internet servers where other pow-
erful warriors could be met, allowed for greatly improving the

GP system, and in fact the latest versions of GP evolved
warriors are able to defeat both machine-generated and hand-
written warriors. Indeed, GP-generated warriors are the first
machine-written programs ever able to top some Core War in-
ternational competitions.

Using the Core War game, we could conceive, implement,
evaluate, and fine tune several mechanisms that assist the evo-
lutionary core in GP. Such techniques include assimilation of
existing code, detection of clones, and analysis of gene-level
entropy to improve the selection operator and favor diversity.
The combination of these new techniques, coupled with the pre-
vious GP architecture, which already featured generic instruc-
tion library, weighted instruction fragments, and self-adaptive
endogenous parameters, allowed GP to generate strong Core
War warriors.

III. CORE WAR

Core War is a game played by two or more programs written
in an assembly language called redcode, running in a virtual
computer called memory array redcode simulator (MARS). The
object of the game is to cause all processes of the opposing pro-
grams to terminate, leaving the winner in sole possession of
the machine. This is eventually accomplished by overwriting
the opponents’ code with illegal instructions. MARS memory
is named “core,” and, to stress the aggressive nature of the task,
redcode programs are commonly called “warriors.”

Core War was popularized by Dewdney in his column in
Scientific American [20]. The “Core War Guidelines,” a formal-
ization of the rules, were written in the same year by Jones and
Dewdney himself. It must be recalled that the idea of programs
fighting in a computer memory, trying to overwrite the oppo-
nents, dates back to the early 1960s with the game Darwin de-
vised at Bell Labs by Vyssotsky, Morris, and Ritchie.

Since its appearance, Core War attracted a huge interest
from both the scientific community and from hobbyists. The
International Core War Society (ICWS) was established in
1984 for the creation and maintenance of Core War standards,
and for running tournaments. In the following years, there have
been six annual tournaments and two new standards (ICWS’86
and ICWS’88). Several enthusiasts devised impressive warriors
and developed subtle strategies, most labeled with evocative
names such as scanner, vampire, dwarf, and stoner. A big
community appeared suddenly.

In 1994, the ICSW proposed the new Core War standard,
named ICSW’94. However, the golden era of Core War was al-
most ended and interest was swiftly decreasing. Today, despite
several Core War tournaments run every year, the official Core
War FAQ still maintains that the ICSW’94 “is currently being
evaluated.”

A. Core War and Validation

As stated in Section I, the choice of Core War was inspired by
the necessity of finding a simple enough problem, with strong
similarities to the microprocessor test program generation.

The MARS virtual machine is extremely abstract and atypical
when compared with current microprocessors’ Instruction Set
Architectures. However, striking similarities can be identified
to motivate our choice.

• In both cases. the goal is to generate an assembly-level
program, whose “performance” may be assessed by run-
ning it on a (virtual) processor in a partially unknown
environment.

• In both cases. it is not possible to evaluate a program
without explicit simulation. Except in trivial cases, the fit-
ness of an individual cannot be inferred with a syntactical
analysis.

• The MARS virtual machine is a multithreaded concur-
rent environment, with some undetermined behavior due
to the ignorance about the opponent’s memory location
and functionality. This resembles the concurrent specula-
tive execution in microprocessors.

• Successful Core War warriors must exploit all aspects
of the available instruction set, and usually must rely on
weird side effects specified by the redcode language. This
resembles the need for test programs to find corner cases
to be able to test all functionalities of the microprocessor.

• In MARS, memory size and execution time are limited
resources: the memory is of fixed size, and faster warriors
have a competitive advantage over slower ones. This
polarization toward compact and fast programs resem-
bles the quality requirements for microprocessor test
programs.

B. Evolutionary Core War

Core War also attracted interest from the evolutionary algo-
rithm community. The idea of competing entities struggling in
an artificial environment for survival is appealing, and it is illus-
trated clearly by the imaginative terminology developed. More-
over, redcode is a simple and completely orthogonal assembly
language (all addressing modes are utilizable with all instruc-
tions, and all instructions are exactly in the same format), and
the implementation of genetic operators is simplified.

In 1991, Perry [27] showed how random code can evolve
into successful Core War warriors in only a few generations.
In the following years, several interesting approaches were de-
vised. Major contributions include: Newton’s Redmaker [8], a
warrior evolver based on a grid-shaped evolution pool; Ankerl’s
Yace (Yet Another Corewar Evolver) [4]; and Hillis’s RedRace
(Red Queen’s Race) [5]. Both the latter approaches start with
a random population. In Yace, warriors fight against each other
and the losers are replaced by slightly modified versions of the
winners. In RedRace, on the other hand, all warriors in the popu-
lation compete against all warriors on a target hill. RedRace also
includes sharp techniques for speeding-up the search process,
saving and restoring effective warriors (Valhalla and Resurrec-
tion), and handling multiple populations.

In 2002, Blaha and Wunsch [12] presented a study on au-
tomatic assembly program optimization using Core War as a
case study. They analyzed different techniques and attained in-
teresting results, although, in the authors’ own words, the inves-
tigation was unable to devise really effective warriors.



698 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 1. �GP system architecture. The characteristics of the assembly language
are stored in the instruction library. The evolutionary core evolves a population
and may exploit different fitness functions for different problems through the
external evaluator.

In 2003, we [17] started using Core War as a test bench to
enhance GP, a generic assembly-level program generator. The
game was exploited to evaluate the effectiveness of new evo-
lutionary methodologies: the results attained by evolved war-
riors were used as a feedback for the adopted selection schemes
and operators. The experience yielded an effective modified is-
land model. However, despite the effort, no evolved warrior
was ever able to attain good results on international Core War
competitions.

In 2004, the approach was improved with a new migration
model that exploits the polarization effect and a new hierarchical
coarse-grained approach applicable whenever the final goal can
be seen as a combination of semi-independent subgoals [18].
The GP warrior eventually managed to be ranked 18th in an
international competition among other evolved warriors.

IV. GP

This paper exploits GP [31], a system for automatically de-
vising and optimizing a program written in assembly-like lan-
guages. While features of GP stem from standard genetic pro-
gramming [23], GP was designed for generating syntactically
correct assembly programs of variable size and fully exploiting
the available assembly syntax (e.g., different addressing modes,
instruction set asymmetries, subroutines, interrupt calls). More-
over, GP was planned specifically to be versatile and usable
with different microprocessors and different goals, and it has
already been used for many different tasks [14]–[16], [24].

GP is composed of three clearly separated blocks (Fig. 1):
an evolutionary core, an instruction library, and an external
evaluator. The evolutionary core cultivates a population of in-
dividuals. It uses self-adaptation mechanisms, dynamic oper-
ator probabilities, dynamic operator strength, and variable pop-
ulation size. The instruction library is used to map individ-
uals to valid assembly language programs. It contains a highly
concise description of the assembly syntax or more complex,
parametric fragments of code. The external evaluator evaluates

the assembly program exploiting a simulator or other tools and
eventually provides the necessary feedback to the evolutionary
core.

Briefly, programs are represented internally as directed
graphs (Fig. 2). Graphs are composed of nodes, each one
mapped to a macro (a generic fragment of code, possibly with
parameters) (Fig. 3).

Test programs are generated by an evolutionary algorithm im-
plementing a strategy modifying graph topologies and
mutating parameters inside nodes. A population of individ-
uals is cultivated, each individual representing a test program. In
each step, new individuals are generated. Parents are selected
using tournament selection with tournament size (i.e., indi-
viduals are selected randomly and the best one is picked). Each
new individual is generated by applying one or more genetic op-
erators. After creating new individuals, the best programs
in the population of are selected to survive to the next
generation.

The fitness evaluation is intentionally external to GP. The
external evaluator is requested to compute a fitness value for
each program, exploiting all the required tools. To further ex-
tend the usability, GP was enhanced to handle a fitness value

composed of terms of strictly decreasing
importance, i.e., if

. The parameter must be selected at the be-
ginning of the evolution process.

The average strength of mutations and the activation proba-
bilities of all genetic operators are endogenous parameters and
are self-adapted by the algorithm. More details on GP may be
found in [31].

V. ADVANCED GP

A. Exploitation of Existing Program

A significant limitation of GP was its inability to reuse ex-
isting material. In current industrial practice, designers and test
engineers write a relevant number of test programs for func-
tional testing and for checking specific corner-case events. It
would be useful to modify them automatically, possibly ex-
tending and enhancing the efficacy of existing test cases. More-
over, it would be extremely beneficial to start the evolution from
a “soup” containing fragments of code already able to excite in-
frequent behaviors.

To allow the reuse of existing code, GP was extended by
adding the ability to analyze a set of existing programs and, ac-
cording to the instruction library, to translate them back to a
possible internal representation. However, since GP was given
the ability to generate almost any fragment of code, translating
generic programs (phenotypes) back to their originating graphs
(genotype) leads to several, nontrivial practical problems. More-
over, the mapping from genotypes to phenotypes is problem-de-
pendent: depending on the instruction library, a single fragment
of code may correspond to different sets of macros (the repre-
sentation may be nonunivocal), or a given fragment of code may
be even impossible to generate.

The whole assimilation process is sketched in Fig. 4. It is
composed of four main phases. First of all, the instruction li-
brary is read and each macro is translated into a regular expres-
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Fig. 2. A genotype (left) and the corresponding phenotype (right). Arrows show how nodes are mapped to different fragments of assembly code. From top to
bottom: the prologue; a single instruction; a node referring to an outer label (subroutine call); a node referring to an inner label (conditional branch); and the
epilogue.

sion [21]. Concurrently, the program is analyzed to identify dif-
ferent blocks (sections) showing syntactical uniformity. In this
phase, different heuristics are exploited to handle generic hand-
written code. Then, in each section, the set of potential labels
(reference points) is identified. Finally, the section is partitioned
in a list of macros. The last phase massively exploits the regular
expressions built from the Instruction Library. After a prelim-
inary pattern matching operation, the macros are validated as-
sessing each parameter and label. Whenever a fragment of code
cannot be generated by the original instruction library, the in-
struction library itself is modified.

As a result of the whole process, the existing code is fully
assimilated by GP. The evolutionary core is able to modify the
code, or mix fragments of codes originally in different programs
exploiting a process that is akin to sexual recombination.

The result of assimilating a test set is a population of individ-
uals and a new instruction library.

B. Diversity in GP

While diversity is a key element of the biological theory of
natural selection and maintaining high diversity is supposed
to be generally beneficial [13], in a test-program generation

problem, maintaining a high degree of diversity in the popula-
tion is critical.

First of all, in a test-program generation problem the fitness
function is requested to condense the whole behavior of a pro-
gram into a manageable numeric amount and the loss of infor-
mation may be relevant. While GP allows the use of fitness
values with an arbitrary number of terms, the result is always
highly succinct compared to a hypothetical execution trace with
all the values stored in memory and registers at different times.
For example, the loss of information is evident when a cov-
erage metric such as statement coverage or expression coverage
is used: there is no guarantee that two programs are related by
any means simply because they both excite the same percentage
of the functionalities of a microprocessor. Thus it is possible
that two programs attaining the same result on a code-coverage
metric share no common parts and exploit different functional-
ities in the microprocessor. Indeed, it could be highly beneficial
to combine such programs with a crossover operator, and con-
ventional wisdom suggests that the diversity of the programs
should not be overlooked during evolution. Such a situation is
common to a large number of different scenarios and metrics.

The problem is intensified by the assimilation mechanism:
adding handwritten code into a population of random individ-
uals is likely to produce a very unbalanced situation, where few
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Fig. 3. Short program with a one node implementing a two-line,
three-parameter macro. The highlighted node contains the actual values
of the parameters: the constant string R1, the integer number 12, and a
reference to a preceding node.

Fig. 4. Assimilation process. The existing programs are analyzed using
different heuristics, and the instruction library transformed in a set of regular
expressions in order to discover a possible mapping. The result is a population
and a new instruction library.

individuals are significantly fitter than the vast majority. Such a
population can be invaded quickly by individuals that are iden-
tical or almost identical to the fittest ones, reaching a premature
steady-state condition.

The genetic programming literature consistently cites the im-
portance of maintaining diversity as being crucial in avoiding
convergence toward local optima and there are several different
possible strategies to promote diversities, including nonstandard
selection, mating, or a replacement strategy. Indeed, GP per-
formances were already enhanced exploiting coarse-grained ap-
proaches, and such geographical distributions of individual are
known to promote diversity [17], [18].

A qualifying aspect of GP is the loose relationship between
evolutionary core, phenotypic representation (controlled by the

instruction library), and fitness calculation (performed through
the external evaluator). Therefore, the adopted method for pro-
moting diversity must not be based on the phenotypic appear-
ance of individuals (the assembly programs), nor their fitness.

Two approaches are proposed to tackle the problem: clone
scaling and delta-entropy fitness holes. The former technique is
used to detect identical individuals and assigning them a fitness
value without the need of running the evaluation. Such an as-
signed fitness value may be scaled down by a predefined factor.
The latter technique is a mechanism to promote diversity in the
population acting on the selection process.

1) Clone Scaling: Before evaluating an individual, GP
checks if identical individuals (clones) are already present in
the population. When the number of clones is greater than
zero, the actual fitness assigned to the individual is multiplied
by . The parameter is called the clone-scaling factor.
While a continuous range of values is possible, usually is set
either to one (no clone scaling) or to zero (clone extermination).
The clone-scaling factor is not self-adapted.

It must be noted that identical individuals at the genotypic
level may not be mapped to identical programs at the phenotypic
level. All labels, for instance, are translated to unique strings.
Also, unique tags are designed intentionally to be distinctive.
Moreover, different individuals at the genotypic level may be
clones since the actual value of the constants is considered and
not the index.

To speedup the search for clones, a hash value is computed
for each individual. GP exploits state-of-the-art algorithms for
calculating the hash functions of different portions of the graph
such as string constants, pointers, and integers. The explicit
comparison of two individuals is performed only if two individ-
uals have the same hash value, making the process extremely
efficient.

Clone scaling is particularly useful to discard duplicates after
assimilating a large number of existing test sets or merging dif-
ferent populations.

2) Entropy and Delta-Entropy: Before defining the delta-
entropy fitness hole, this section introduces some background
definitions, in particular, the concept of entropy in GP. The
purpose of the entropy value is not to rank a population in abso-
lute terms, but to detect whether the amount of genetic diversity
in a set of individuals is increasing or decreasing.

Let us define a symbol as an instance of a macro, i.e., a
macro and the value of its parameters (Fig. 3). As for clone de-
tection, the actual value of the constants is considered (the order
of the list of possible alternatives has no influence); inner labels
(labels inside the same section) are transformed to relative off-
sets; and outer labels are ignored completely. With this defini-
tion, just for the sake of entropy computation, the individuals in
the population may be represented by the corresponding set of
symbols.

The number of possible symbols, according to the given defi-
nition, is quite large: integer and hexadecimal parameters easily
bloat the space of possible values. Moreover, the calculation
may include tricky choices: some macros may be listed in the
instruction library with a null probability, and some of them
may be present in the actual population; the number of possible
values for inner labels depends on the size of programs.
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To overcome these difficulties, GP simply measures the
frequency of a given symbol in the universe of actually used
symbols. Given a set of individuals in the population,

, we define the -Universe of Sym-
bols, , as the set of all symbols appearing in at least one
individual in . Formally, .
The frequency of a symbol in the set is

occurrences(s) occurrences(s') . With
a formula similar to the calculation of entropy in information
theory, the entropy of the set of individuals is defined as

(1)

In a population, , individuals are con-
sidered ordered according to their fitness fitness
fitness fitness . The partial entropy function

(with ) is defined as

(2)

i.e., the entropy of the subpopulation composed of the fittest
individuals of the original population. Clearly, .

Given the above definition, each individual
can be associated with a delta entropy value

(3)

The delta entropy associated with an individual is an approx-
imate and qualitative measure of the amount of new genetic in-
formation brought by the individual in the actual population.

Intuitively, a high delta entropy value indicates that the
individual brings effective fragments of code in the popula-
tion. Thus, the individual is valuable and should be preserved.
On the contrary, a low or negative suggests that individual

does not introduce enough unique symbols considering its fit-
ness value. Theoretically, such an individual could be generated
merely by applying the appropriate genetic operators to fitter
parents, and thus may be safely discarded.

3) Delta-Entropy Fitness Holes: GP selection is based on
tournament selection of size . When two individuals are com-
pared, with a probability their delta entropy values are consid-
ered instead of their fitness values. This corresponds to a hole in
the fitness function, where individuals are not chosen according
to their direct ability to solve the specified task, but to a different
measure. Thus, fitness holes bias evolution without affecting the
fitness calculation. Delta-entropy fitness holes favor individuals
containing new genetic material, and promote genetic variability
in the population.

The fitness holes technique has been proposed by Poli [28] for
solving the bloating problem. It must be noted that delta-entropy
values are deeply related to fitness (in the definition of , the
order in which individuals are considered is significant). More-
over, the fitness calculation is external to the evolutionary core
leading to additional difficulties. While a mathematical analysis
is out of the scope of this paper, from a practical point of view
the main effect of delta-entropy fitness holes is to disfavor al-
most identical individuals. If a genetic operator slightly mutates
an existing individual enhancing it, while the fitness values of

the two individuals may be similar, the delta-entropy value of
the descendant is likely to be much higher than the delta-en-
tropy value of the parent (almost all symbols of the parent are
also present in the offspring).

VI. EXPERIMENTAL EVALUATION

The experiments report two lineages of warriors: RedBorg
and White Noise. The former were the first Core War warriors
evolved exploiting an assimilation process and are reported here
for completeness. White Noise, on the other hand, was cultivated
exploiting all the techniques reported in this paper.

A. Core War Hills

Core War competitions are usually called hills, and the
champion of a Core War competition is therefore called king of
the hill (KOTH). Most hills are a repositories of warriors.
When a new program is submitted, it plays a certain number
of one-on-one games against each of the programs currently
on the hill. In each game, the two opponents are put in random
positions in the core. The new warrior gets (usually 3) points
for each win and (usually 1) points for each tie. In each game,
the two warriors are put at a pseudorandom distance inside the
MARS memory. The pseudorandom sequence is usually seeded
with a number calculated from the source code of the warriors
themselves. Thus, all matches are reproducible, but distances
are unpredictable by warriors’ authors as long as sources are
undisclosed.

Existing programs never replay each other. On some hills
their previous battles are recalled and the score updated ex-
actly, while on other hills the new score is calculated with a
formula such as

victories ties
(4)

Both these scoring systems are called flat. Some hills instead
of ranking warriors with flat scores use a so-called recursive
scoring, where flat scores are weighted, and these weights mod-
ified repeatedly until a steady state is reached. The least warrior
is usually pushed off the hill, except from infinite hills which
grow indefinitely (no warrior is ever discarded from an infinite
hill). Typically, infinite hills use recursive scores.

Several hills are available on the Internet, each one accepting
a specific redcode style (e.g., instruction set or program length)
and running games with certain parameters (e.g., number of
matches, maximum number of concurrent warriors or scoring
systems). The oldest and most famous server is simply named
KOTH [6] and still hosts seven hills with different settings,
including two multiwarrior melee hills and two hills using
the older redcode’88 standard. New servers appear and close
frequently.

The core size (the dimension of the MARS memory) is a
crucial parameter and may profoundly influence warrior strate-
gies. The most common core size is , followed by

, and (all of them divisible by 4).
Hills running core of size are called tiny hills, and usu-
ally do not accept warriors containing more than 20 instructions.

Due to this limited search space, most approaches exploiting
evolutionary techniques have focused on climbing tiny hills.
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TABLE I
TOP TEN WARRIORS OF TINY (EVOLVED) HILL

AT SOURCEFORGE. PROGRAMS DEVISED BY

�GP ARE SHOWN IN BOLDFACE

These hills are also practical for the purpose of this paper: test
programs are required to be extremely short, and being able to
optimize the size of a test program is a required capacity. While
unnecessary code in the validation process may lead to overlong
simulations and force checking irrelevant data, it could cause
significant loss of money in the test process. Moreover, some
test procedures, such as on-line testing, require firm limits to
test programs size.

The most active tiny hills are available currently on SAL [3],
Sourceforge [2], and Koenigstuhl [7]. SAL is hosted at the De-
partment of Mathematical and Statistical Science of Univer-
sity of Alberta, Canada. The server runs five different hills,
including a tiny hill and a nano hill .
Sourceforge server runs nine hills, two of which are tiny: the
Tiny (evolved) Hill limited to evolved (nonhandwritten) war-
riors, and the Tiny (all) Hill accepting all types of code. The
Koenigstuhl (King’s Chair) server hosts ten infinite hills, one of
them, called Tiny-Koenigstuhl, using a core size of . The
infinite tiny hill lists more than 250 strong programs collected
over the years.

Differently from other hills, the source code of warriors
posted to SAL is not visible to all users. Thus, many authors
who are not willing to expose their strategies send their latest
warriors to this server only, making its hills particularly active
and hard.

B. RedBorgs

For devising RedBorgs, GP was set to evolve a population
of and individuals through 100 generations.
Cultivation did not exploit clone scaling and delta-entropy fit-
ness holes. The adopted instruction library is described in [18].

RedBorg v1.0r6 started from a population composed of all
the warriors in the Tiny (evolved) Hill of Sourceforge and easily
attained the selected goals, getting KOTH of both Sourceforge
tiny hills in May 2004. When new warriors became KOTH on
Tiny (all) Hill, they were assimilated and a new RedBorg (Red-
Borg v1.0r7) was quickly cultivated to defeat them. This warrior
was not submitted to the Tiny (evolved) Hill since it is likely to
exploit handwritten code.

Table I shows the top ten warriors on the Tiny (evolved) Hill,
while Table II shows the top ten warriors on Tiny (all) Hill in
August 2004. Warriors devised by GP are shown in boldface
(PanGenetic Gargle Blaster III is a warrior previously evolved

TABLE II
TOP TEN WARRIORS OF TINY (ALL) HILL

AT SOURCEFORGE. PROGRAMS DEVISED

BY �GP ARE SHOWN IN BOLDFACE

Fig. 5. The instruction library exploited for evolving white noise. A single
macro is sufficient to describe the whole Redcode syntax since instructions are
completely orthogonal to addressing modes, and there are no subroutines, nor
interrupts.

by GP without exploiting the assimilation process, the details
are out of the scope of this text).

RedBorg v1.0r6 initially ranked 4th on SAL Tiny Hill, neither
RedBorgs was posted to infinite hills.

C. White Noise

A more interesting genetic experiment started assimilating all
possible warriors from all accessible tiny hills, such as Tiny-
Koenigstuhl and Sourceforge. Several additional warriors were
taken from the usenet or enthusiasts’ web pages over the In-
ternet. Overall, GP assimilated over 2000 different warriors.
Relying on clone scaling and delta-entropy selection, no pre-
processing of any type was performed on the initial set of pro-
grams. All programs previously evolved by GP in [17] and [18]
were also assimilated. A minimal instruction library, limited to
a single macro was used (Fig. 5). It must be noted that due to
the simplicity of both redcode language and instruction library
only a subset of the features in the assimilation mechanism was
exploited effectively.

After the assimilation, GP was started with a population of
and individuals. The maximum number of

generations was set to 1000. No problem-specific enhancements
of any kind were exploited, since the goal was to test the en-
hancements of the evolutionary core.
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Fig. 6. White noise source code. Comments have been inserted by hand.

Warriors were cultivated against a hill of 50 programs taken
from the Tiny-Koenigstuhl and exploiting different strategies. To
remove the bias introduced by the pseudorandom distance cal-
culation, all matches starting at a valid distance (i.e., all possible
matches) for each couple of warriors were run.

Moreover, to favor an aggressive behavior, the main contri-
bution to the fitness value was the number of victories followed
by the score attained on the hill . Practical con-
siderations helped in setting the dimension to the fitness hole to

, thus, 30% of the parents were chosen by comparing
their delta-entropy contributions rather than their fitness values.

The evolved warrior was called White Noise (Fig. 6) and on
August 2004 became the first KOTH ever devised by a machine
on the SAL Tiny Hill. It was also submitted to the Koenigstuhl
Infinite Tiny Hill, and became KOTH of the infinite hill. The
evolved warrior was posted immediately on the newsgroup
rec.games.corewar asking the community for comments, and
exposing it to targeted attacks.

White Noise resembles Tiny BiShot 2.0 by Schmidt: it scans
the MARS memory seeking for its opponent, and starts the at-
tack as soon as a suspicious memory location is detected. This
approach is called one-shot scanning, and it is possible because
the memory is initialized with a special value before each match.

More precisely, White Noise compares pairs of memory loca-
tions and conjectures the presence of an opponent if they are not

equal, regardless of their actual content. Since the attack starts
as soon as a difference is found, it can be mystified by spurious
code or randomly modified memory locations. This is a draw-
back common to most one-shot scanners. Indeed, White Noise
does modify the memory while scanning creating a decoy track
against other scanners.

The aggression is performed in two steps. First, White Noise
stuns the other warrior by throwing inside the opponent code
special instructions that, although legal, have the effect of
slowing down the execution. Then, it crushes the other program
by completely overwriting it with illegal instructions. The
second attack phase, called core clear, is particularly robust,
and could remain operative even if damaged.

White Noise scans the memory backward using uncommonly
big and irregular steps. Remarkably, when it finds a suspicious
memory location, it focuses its attack both on it and 50 locations
away. The overall effects of this strategy are unclear: commenta-
tors suggest that it could help finding certain type of opponents
(the so-called papers) faster, but it may also be a penalizing
factor against different ones, especially small warriors, or front-
ward one-shots. As a result, some authors wrote short, frontward
one-shots and submitted them to the SAL tiny hill, but did not
manage to defeat White Noise.

Table III reports the top of Tiny-Koenigstuhl. White Noise
scores more than four points higher than the closest opponents.
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TABLE III
TOP TEN WARRIORS OF INFINITE TINY HILL

AT KOENIGSTUHL. THE PROGRAM DEVISED

BY �GP IS SHOWN IN BOLDFACE

TABLE IV
TOP TEN WARRIORS OF TINY HILL

AT SAL. THE PROGRAM DEVISED

BY �GP IS SHOWN IN BOLDFACE

Table IV reports the top of the Tiny Hill at SAL after challenge
#393, nine months after the submission of White Noise. Even
if its source code was publicly available, the evolved warrior
defeated more than 70 human-written challengers, remaining
KOTH on SAL. Indeed, White Noise also entered the Tiny Hall
of Fame at corewar.co.uk [9], the record of the warriors that have
survived longest on SAL, and, in the August 2005 list, it ranks
15th. Remarkably, White Noise is also the only evolved warrior
on such list.

Challenge #394 eventually modified the situation, pushing
Endless pain by Labarga to the top. However, White Noise be-
came KOTH again at Challenge #403. Recall that this is prob-
ably the hardest and most active tiny hill available today, and all
scores are updated whenever a new warrior challenges it. The

GP warrior, one year after its appearance, is still fighting in
the top half of the hill.

Not being able to access the source code of warriors is a
double handicap for GP. First, as showed by RedBorg war-
riors, assimilating a hill is an easy and simple way to get KOTH.
Second, when all warriors on a hill are exposed, it is possible
to use the real results that the programs would attain as fitness
values, focusing the optimization process. Differently, to chal-
lenge SAL, the aim was to evolve generic warriors.

The ending instructions of White Noise are unclear, but, since
the behavior of the program cannot be studied against the op-
ponents, a detailed analysis is difficult. It can be maintained,
however, that they are effective against other warriors since re-
moving them reduces the effectiveness of the warrior: a version
of White Noise without such code has been submitted to the hill

Fig. 7. Effects of delta-entropy fitness holes in a Core War experiment.

under the name of Blue bubble, and its score was 3.8 points
lower than the original one.

It should be noticed that Tiny BiShot 2.0 is the second
strongest warrior on Tiny-Koenigstuhl. Indeed, since White
Noise was evolved against a subset of this hill, it looks rea-
sonable that GP favored strategies similar to Schmidt’s.
Differently, on SAL (after challenge #393), Tiny BiShot 2.0
was ranked only 23rd.

Finally, Fig. 7 shows the score attained by the best warrior
against the test hill during the 1 000 generations of the experi-
ment. The effect of a delta-entropy fitness hole was
compared against the standard selection mechanism (no hole,

). All the other settings were identical and are described
above. The practical effect of the delta-entropy fitness hole is
evident.

VII. PRELIMINARY RESULTS ON DLX/pII

The described techniques are also being exploited for the au-
tomatic completion and refinement of existing test programs.

In the design cycle of a microprocessor core, the unit is usu-
ally refined through a series of subsequent steps. To deliver a
flaw-free unit at the end of the process, a verification step is re-
quired in each stage, and it would be useful to automatically de-
velop the set of test programs for verification concurrently to the
design, the automatic process exploiting assimilation and GP
would require both less human intervention and less computa-
tional resources. Preliminary experiments targeted the DLX/pII,
a pipelined microprocessor [26] and showed how the test pro-
grams developed by designers can be enhanced automatically
and completed to build a set able to maximize a given verifica-
tion metric.

An iterative process was then run: a set of test programs was
cultivated automatically by the GP to maximize a given cov-
erage metric. It was assimilated and used as a starting point to
maximize a more complex metric. The assimilation process al-
lows tweaking the instruction library in each step, modifying it,
and permits the inclusion of handwritten code for covering rare
corner cases.

The five considered coverage metrics were: statement cov-
erage (the percentage of executable statements in the model
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TABLE V
EXPERIMENTAL RESULTS ON DLX/pII

that have been exercised during the simulation); branch cov-
erage (the percentage of Boolean expressions evaluated to both
true and false); condition coverage (the percentage of Boolean
subexpressions evaluated to both true and false); expression cov-
erage (as condition coverage, but calculated against concurrent
signal assignments); and toggle coverage (the percentage of bits
that toggle at least once from 0 to 1 and at least once from 1 to
0 during the simulation).

Results are summarized in Table V. The set of functional pro-
grams devised by the designer to validate the main functional-
ities of the core is used as a starting point. The different rows
contain the results for the different set of test programs: the ini-
tial one and the 5 generated by the GP maximizing specific
metrics. The values attained by each set on all possible met-
rics are also reported. The grayed cells represent the value on
the metric that the set was intended to maximize. The last row
contains the results of the complete set including the manually
generated program.

Significantly, the GP was always able to maximize the cov-
erage it targeted (the grayed cells), but it is interesting to notice
the relationship between the different verification metrics. For
instance, maximizing toggle coverage yields the second highest
statement coverage, showing that a high activity on data can
cause a large number of statements to be exercised. On the other
hand, maximizing the condition coverage does not yield impres-
sive results compared with the branch coverage, while, in theory,
the former metric is an extension of the latter.

While the number of assimilated test programs for the
DLX/pII is considerably smaller than the number of warriors
assimilated to cultivate White Noise, the complexity of the
assembler is higher. New experiments on more complex micro-
processors are currently being performed.

VIII. CONCLUSION

This paper showed how playing the computer game called
Core War may help devise effective test programs for validating
and testing microprocessors. To devise effective warriors,
new techniques were integrated in GP: the ability to assim-
ilate existing code, detect clones, and a selection mechanism
for promoting diversity completely independent from fitness
calculations.

Using such techniques, GP evolved the strongest Core War
warriors in the four main international competitions: the Tiny
(evolved) Hill and the Tiny (all) Hill at Sourceforge; the tiny hill
at SAL; and the infinite tiny hill at Koenigstuhl. GP-generated

warriors are the first machine-written programs ever able to be-
come King of Hill (champion) in all these competitions.

The described techniques are now being applied on the
original real-world problem. First results are very promising,
showing the improvements that could be made to the optimiza-
tion algorithm while working with a game problem are equally
useful in a totally different domain. Thus, we legitimized the
use of games as useful conceptual and practical tools to foster
the advance in the evolutionary computation community to
tackle industry-strength problems.

We are currently extending the evolutionary core of GP en-
hancing the self-adaptation mechanism and adding new genetic
operators. More specifically, we are turning and into en-
dogenous parameters, and we are analyzing the effects of ex-
tremely small mutations to fine tune the programs.
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