
Software systems as complex 
networks

Christopher R. Myers
John McIver

Thomas Liu



Overview of Topic

• Introduction
• Collaboration in software systems

• Collaboration graphs

• Results
• Connected components

• Degree distributions

• Degree correlations

• Clustering and hierarchical 
organization

• Topology, complexity and evolution

• Related work

• Refactoring-based model of 
software evolution

• Software systems and complex 
networks
• Robustness

• Degeneracy and redundancy

• Motifs, patterns, and emergent 
computational structures



Introduction

• Scale-free networks
• “a connected graph or network with the 

property that the number of links 
originating from a given node exhibits a 
power law distribution” [1]

• Internet, World Wide Web, collaborations 
in science, metabolic pathways

• Science of complex networks
• Evolve
• Robust
• Adaptive

• Small-world qualities
• “a network has this property if it has 

relatively few long-distance connections 
but has a small average path-length 
relative to the total number of nodes” [3, 
p. 238]

[3]

Hub

Node



Introduction cont.

• Software systems
• Interacting units and subsystems

• Many levels of granularity

• Organization
• Highly functional

• Highly evolvable

• Evolution though collaborative 
design
• Interfacial specificity controlling 

parameter

• Evolving biological systems

• Collaboration in software
• Modularity

• Reuse

• Distribution of responsibility

• Abstractions

• Optimality of dependencies

• Motivation for study
• Parallels between software and 

other complex networks



Introduction: Software Collaboration

• Design Patterns for system evolvability

• Mechanism for defining class object interaction
• Also communicate intent of design 

• Micro-structural level

• Solve real issues that can be architecturally cumbersome
• Double dispatch

• More examples



Introduction: Software Collaboration

• Call Graphs
• Static and Dynamic

• All work in this paper is static 
based

• Class/Object collaboration 
diagrams
• Inheritance

• Aggregation

[7]



Introduction: Software Analyzed

• Object Oriented (C++)
• Visualization Tool Kit (VTK) version 4.0 by Kitware

• Digital Material (DM) version 1.0.2

• AbiWord 2.4.19

• Call Graphs (C)
• Linux 2.4.19

• MySQL 3.23.32

• XMMS 1.2.7

[2]

[6]



Results: Connected Components

• Weakly Connected Components
• Found in undirected graph

• Strongly Connected Components
• Mutually reachable by traversing 

directed edges

[4]

[5]



Results: Connected Components

VTK DM AbiWord Linux MySQL XMMS

# nodes 788 187 1096 5420 1501 1097

# edges 1389 278 1857 11460 4245 1901

# WCC 6 10 19 47 10 36

# nodes in largest 
WCC

771 162 1035 5285 1480 971

# edges in largest 
WCC

1374 258 1798 11370 4231 1809

# SCC 4 2 46 10 12 0

# nodes in largest
SCC

5 6 25 6 7 0

# edges in largest 
SCC

8 10 72 9 10 0

Fraction of nodes 
in any SCC

0.0165 0.0428 0.1332 0.0057 0.02 0.0



Results: Connected Components

•All six system consist of a single 
dominant WCC

•Few nodes belong to any SCC

• Lack of strong membership in 
SCCs
• different from other directed 

complex networks
• WWW
• metabolic networks

•SCCs reflect subgraphs that are 
mutually reachable

[7]



• Summarize connectivity nodes
• In-degree: 𝑘𝑖

𝑖𝑛, 𝑃𝑖𝑛(𝑘)

• Out-degree: 𝑘𝑖
𝑜𝑢𝑡 , 𝑃𝑜𝑢𝑡(𝑘)

• Scale-free

• Power law over small range

• VTK, DM, AbiWord show asymmetry
• 𝛾𝑖𝑛 ≈ 2, 𝛾𝑜𝑢𝑡 ≈ 3
• Class collaboration (inherence + 

aggregation)

• Linux, MySQL, XMMS
• 𝛾𝑖𝑛 ≈ 𝛾𝑜𝑢𝑡 ≈ 2.5
• Call graph

C++

C

VTK DM Abi

Linux MySQL XMMS

Results: Degree Distributions

[7]



Results: Degree Correlations

• ↑out-degree = ↓in-degree
• vtkUnstructuredGrid aggregates 

mid-level objects

• ↓out-degree = ↑in-degree
• Classes like vtkObject are common 

in polymorphic frameworks

C++

C

VTK DM Abi

Linux MySQL XMMS

[7]



Results: Degree Correlations

VTK DM Abi Linux MySQL XMMS

k≥10 -0.48 0.01 -0.16 -0.18 -0.23 -0.75

All k 0.09 0.10 0.18 -0.01 -0.03 -0.07

• Pearson correlation coefficients
• Measures linear correlation

• [-1, 1]

• k≥10 removes dense core of low degree nodes [6]



Results: Degree Correlations w/Mixing

VTK DM Abi Linux MySQL XMMS

In-in 0.088 -0.043 0.065 -0.005 0.114 0.067

In-out -0.034 -0.010 0.083 -0.009 -0.067 -0.036

Out-in -0.169 0.020 0.042 -0.098 -0.101 -0.180

Out-out 0.137 0.098 0.111 0.014 0.179 0.093

Undirected -0.194 -0.192 -0.084 -0.067 -0.083 -0.114

• Weak positive correlation among out-degrees means nodes with 
similar out-degree tend to be connected

• Weak positive correlation among in degrees 



Clustering and Hierarchical Organization

• Clustering is typically measured on undirected graphs

• Clustering coefficient C_i = 2n/k_i(k_i - 1) where n is the number of 
pairs of neighbors of node i that are linked, k_i is the degree of node i

• Clustering of the form C(k)~k^-1 is a signature of hierarchical 
organization

• Plotting the degree-dependent clustering for the six software graphs 
does indicate hierarchical organization



Topology, Complexity, and Evolution

• Measured source file size, number of methods, and average 
revision rate of classes, then compared them to the in-degree and 
out-degree of those classes

• All three metrics have a strong positive correlation with out-
degree, and a weaker, negative correlation with in-degree

• Classes that evolve most quickly tend not to interact directly with 
each other

• Classes with large out-degrees evolved more rapidly than classes 
with large in-degrees



A refactoring-based model of software 
evolution
• Explores how software engineering practices used to enhance system 

evolvability alter the topological structure of software collaboration 
graphs

• Refactoring to remove “bad smells” from code that inhibit evolvability

• A simple model involving binary strings of arbitrary length was 
developed to simulate functions and call graphs.

• After running refactoring processes on the model until the call graph 
ceased to change for at least 10000 consecutive refactoring steps, 
many features of observed systems was found in the model



Robustness, fault tolerance, and evolvability

• A by-product of scale-free networks in many systems is enhanced 
robustness in the face of random node failure

• This is not to be found in software systems, which tend to fail easily 
when some code becomes mutated

• The complexity in software systems is not for creating fault tolerance 
but rather evolvability

• Design patterns aim to organize interactions of objects to ensure 
sufficient specificity for regulation and control without unduly freezing 
a system into commitments and constraints that are difficult to evolve



Degeneracy and redundancy

• Redundancy is the ability of identical elements to perform identical 
functions, whereas degeneracy is the ability of different elements to 
perform similar functions

• Degeneracy plays a role in evolvability but redundancy does not

• Author argues that software collaboration networks do have 
degeneracy, largely in the form of polymorphism



Motifs, patterns, and emergent 
computational structures
• Growing interest in scanning large, emergent networks to locate statistical 

significant, recurring motifs

• Some motifs in information processing systems like gene transcription 
networks and neuronal systems are feed-forward loops and bifans, as well as 
biparallel subgraphs

• Examining the six software graphs being studied in the paper, using a motif 
finding algorithm, the same motifs as above are found to be prevalent

• Extracting complex design patterns from existing software systems without 
detailed prior information would be useful in identifying functional important 
motifs



References

1. http://mathworld.wolfram.com/Scale-FreeNetwork.html
2. http://www.lanl.gov/newsroom/picture-of-the-week/pic-week-2.php
3. Complexity a Guided Tour, Melanie Mitchell, Oxford University Press,

2009
4. CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=647584
5. By Kiatdd - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=37108966
6. By Larry Ewing - image sourcedrawing description, Copyrighted free use, 

https://commons.wikimedia.org/w/index.php?curid=80930
7. Meyers, C., Software systems as complex networks: Structure, function, 

and evolvability of software collaboration graphs, 2003

http://mathworld.wolfram.com/Scale-FreeNetwork.html
http://www.lanl.gov/newsroom/picture-of-the-week/pic-week-2.php
https://commons.wikimedia.org/w/index.php?curid=37108966
https://commons.wikimedia.org/w/index.php?curid=80930

