
Lecture	7
Order	Out	of	Chaos
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Lyapunov Exponents:	Recall	from	Last	Time
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Lyapunov Exponents:	Numerical	Estimation

Lyapunov exponent: � = ln |f 0
(x

⇤
)|

Rate of divergence over time:

f

0
(x) =

dxt+1

dxt

Assumption: Lyapunov

exponent is the

same everywhere in

the basin of attraction.



Lyapunov Exponents:	Maximum

This is really the averaged

sum of the Lyapunov exponents, �.
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Lyapunov Exponents:	Maximum

�: Short term behaviour

�
max

: Long term behaviour



Lyapunov Exponents:	Numerical	Estimation

Mean rate of divergence:
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Since maps depend on the previous

step, we can show that:
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Lyapunov Exponents:	Numerical	Estimation

This is our approximation of � :
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Lyapunov Exponents:	Numerical	Estimation

We want to look at the behaviour near x⇤
.

How can we know xt is near x
⇤?



Lyapunov Exponents:	Numerical	Estimation

We want to look at the behaviour near x⇤
.

How can we know xt is near x
⇤?

We iterate the map long enough that xt

crosses the separatrix that defines the long

term behaviour.



Lyapunov Exponents:	Numerical	Estimation

This is our approximation of � :
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Where t

start

exceeds the transient period.
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Lyapunov Exponents:	Numerical	Estimation



function ls = lyapunov(F, F_deriv, n_samples, param_range, transient_time, max_time)
% Takes a dynamical 1-parameter map and plots the Lyapunov exponents as a function of
% the parameter

% Create a vector of parameter values to evaluate
param_values = linspace(param_range(1), param_range(2), n_samples);

ls=[]; % This stores the Lyapunov exponents

for param=param_values
x_t=rand(1); % Sample over many initial values
lyp_exps = [];

for(t = 1:max_time)

% Evaluate the user defined map F
x_t=F(x_t,param);

% Wait until the transient period is over 
if(t > transient_time)

% Evaluate the derivative at the current point
lyp_exps = [lyp_exps, F_deriv(x_t, param)];

end
end

% Calculate Lyapunov approximation for the vector of derivatives
ls = [ls, mean(log((abs(lyp_exps))))];

end



% Show the Lyapunov exponents and bifurcation plot for the logistic map
F = @(x,r) r*x*(1-x) % Define the logistic map
F_deriv =@(x,r) r-2*r*x % Define the derivative of the logistic map
x0 = 0.5 % An initial value for the bifurcation plot
n_samples = 250 % Number of points to plot 
param_range = [0,4] % Parameter range to plot, r for the logistic map
transient_time = 500 % Make sure we are in the fixed point’s basin 
max_time = 1000 % This minus the transient time is the number 

% of Lyapunov samples to average over

% Calculate the Lyapunov exponents
ls = lyapunov(F, F_deriv, n_samples, param_range, transient_time, max_time);

% Calculate the long term populations
bs = bifurcation(F,x0,param_range(1),param_range(2),n_samples,max_time);

% Plot the results
subplot(2,1,1)
plot(linspace(param_range(1), param_range(2), n_samples), ls, ’b-');
subplot(2,1,2)
plot(linspace(param_range(1), param_range(2), n_samples), bs, 'k.');



Top	Panel:	Plot	of	Lyapunov Exponents,	Bottom	Panel:	Bifurcation	Plot	for	r=0.5



Top	Panel:	Plot	of	Lyapunov Exponents,	Bottom	Panel:	Bifurcation	Plot	for	r=0.5



Lyapunov Exponents	for	2D	Maps

The Du�ng or Holmes Map:

xt+1 = yt

yt+1 = �bxt + ayt � y

3
t

Chaotic at a = 2.75 and b = 0.2.



Lyapunov Exponents	for	2D	Maps

This time we have to deal with

divergence in 2-dimensions.

To do that we use the Jacobian.

... an n-dimensional generalisation of f

0
(x)

See Lecture 5 for our discussion of the Jacobian.



function max_lyapunovs = lyapunov2d(F, F_Jacobian, t_max, param1_range,…
param2, x0, y0)

current_l = 0;
for param1=param1_range

current_l = current_l + 1;

% Initialize variables
xy = [x0; y0]; xy_lengths = [1;0];

for i=1:t_max
J = F_Jacobian(xy, param1, param2);
xy=F(xy, param1, param2);

% Calculate divergence rate in the direction defined by the Jacobian
xy_lengths=J*xy_lengths;
length=sqrt(sum(xy_lengths.^2)); % Distance formula
max_lyapunovs(current_l) = log(length)/i; % Calculate the average

end
end
end



F = @(xy,a, b) [xy(2); -b*xy(1)+a*xy(2)-xy(2)^3] % Duffling Map
F_Jacobian = @(xy,a, b) [0 1; -b a-3*(xy(2))^2] % Duffling Jacobian

max_time = 500; % How long to run (= number of samples to average)
parameter1_range = 2:0.001:3; % Range over parameter 1: (a for Duffling Map)
parameter2 = 0.2; % Fix parameter 2 (b for Duffling Map)

% Initial values for x and y
x0 = 0.5
y0 = 0.5

% Calculate the maximum Lyapunov exponents
max_lyapunovs = lyapunov2d(F, F_Jacobian, max_time, parameter1_range,…

parameter2, x0, y0);

% Make a plot of the maximum exponents with a line at 0
plot(parameter1_range,max_lyapunovs, parameter1_range, 0, 'k.')
xlabel('Param1: a', 'FontSize', 24);
ylabel('\lambda_{max}', 'FontSize', 24);



Example:	
Holmes	
Map



Feigenbaum’s
Constant

R	≈	3	(2	period	attractor)
R	≈	3.449	(4	period)
R	≈	3.544	(8	period)
R	≈	3.564	(16	period)
.
.
.
R	≈	3.569	(∞ period)



Feigenbaum’s Constant

Rn�1 �Rn�2

Rn �Rn�1
⇡ 4.669

R1 �R0

R2 �R1
⇡ 4.75



Feigenbaum’s Constant

Rn�1 �Rn�2

Rn �Rn�1
⇡ 4.669

R1 �R0

R2 �R1
⇡ 4.75

True	for	ALL	maps	that
approach	chaos	by
bifurcation.



Phase	Space	Contraction

We can look at the evolution of

a small volume (in 3D) as it contracts near an attractor

The change in volume is measured by looking

at the trace of the Jacobian,

~r · ˙~x



Dissipative	vs	Conserving	Systems

A dynamical system is dissipative,

if it’s phase space volume contracts continuously,

~r · ˙~x(t) < 0, 8t



Dissipative	vs	Conserving	Systems

Dissapative or conservative?

Gros,	C.,	Complex	and	Adaptive	Dynamical	Systems,	4th Edition



Dissipative	vs	Conserving	Systems

Dissapative or conservative?

Conserving Dissapative

Gros,	C.,	Complex	and	Adaptive	Dynamical	Systems,	4th Edition



Dissipative	vs	Conserving	Systems

A dynamical system is conserving,

if it’s phase space volume is constant,

~r · ˙~x(t) = 0, 8t



Adaptive	Systems

Adaptive systems are neither fully

dissipative nor fully conserving.

In terms of energy they have periods

of taking up energy and periods of expending it

Technically, any system where

~r · ˙~x(t)
is adaptive.

can change sign

.



Outline

• Feigenbaum Constant	(Order	->	Chaos	->	Deeper	Order)
• Kuhns Revolutions	in	Science

• Microscope
• Telescope
• Computer	(George	Luger)
• May,	Lorenz,	Crutchfield,	Mitchell	and	many	others…

• Biological	Complexity	from	Simple	Rules.	Hearts	(fractal	structure)

• Exploring	Dynamical	Systems	has	demonstrated	that	surprising	complexity	can	
arise	from	simple	rules.	
• This	allows	us	to	understand	the	diversity	generated	by	things	like	capitalism,	
biological	evolution,	computer	architectures,	and	computer	algorithms.


