
This Time

•  Pointers (declaration and operations)
•  Passing Pointers to Functions
•  Const Pointers
•  Bubble Sort Using Pass-by-Reference
•  Pointer Arithmetic
•  Arrays and Pointers
•  Function Pointers

Pointers
•  Pointers are variables which contain the

memory addresses of other variables.
•  C and C++ produce very fast programs in part

because C++ and C programmers use pointers
extensively.

•  Pointers are very powerful because you can
reference any piece of memory you want
explicitly – most other languages don’t allow
this.

•  Because pointers are so powerful they are also
very dangerous and result in a lot of bugs.

Pointer Variable Declarations
•  Pointer variables

– Contain memory addresses as values
–  The variables we have seen so far contained a

specific value (direct reference)
– Pointers contain the address of variable that

has specific value (indirect reference)
•  Indirection

– Referencing value through a pointer

Pointer Variable Declarations
•  Pointer declarations
– ‘*’ indicates a variable is a pointer

int *myPtr;
 declares a pointer to an int, this is a

pointer of type int*
– Multiple pointers require multiple

asterisks (stars)
int *myPtr1, *myPtr2;

• Can declare pointers to any data type
(float* weight, char* string)

Pointer Variable Initialization

Pointer initialization
– Initialized to 0, NULL, or address
• 0 or NULL points to nothing and will cause an

error if you try to de-reference the pointer (this
is a good thing!).

• If you don’t initialize it to NULL you will get

some random piece of memory and your
program will only work sometimes – this is
very hard to debug because the symptoms will
vary from run to run.

Pointer Operators ‘&’
• & (address operator)

– Returns memory address of its operand
 int y = 5;
int *yPtr;
yPtr = &y;// yPtr gets address of y

– yPtr “points to” y

yPtr y

5

yptr
500000 600000

y

600000 5

address of y is
value of yptr

Pointer Operators
• * (indirection/dereferencing operator)

– Provides access to the value in the
memory location held by the pointer.

– *yPtr returns y (because yPtr points
to y).

*yptr = 9; assigns 9 to y
cout<<*yptr; prints y (here 9)

• * and & are inverses of each other

Pointer Operators (Example)
int x = 0;
int* y = NULL;

y = &x;
cout << y << x;
cout << *y << x;
cout << y << &x;

Calling Functions by Reference
•  3 ways to pass arguments to function

– Pass-by-value
– Pass-by-reference with reference arguments
– Pass-by-reference with pointer arguments

• return can return one value from
function

•  Arguments passed to function using
reference arguments
– Modify original values of arguments
– More than one value “returned”

Calling Functions by Reference

•  Pass-by-reference with pointer arguments
– Simulate pass-by-reference

• Use pointers and indirection operator
– Pass address of argument using & operator
– Arrays not passed with & because array name

already pointer
– * operator used as alias/nickname for variable

inside of function

Using const with Pointers

• const pointers
– Always point to same memory location
– Default for array name
– Must be initialized when declared
– Can’t be changed

const int *cptr = &x;

Pointer Arithmetic
•  Pointer arithmetic

– Increment/decrement pointer (++ or --)
– Add/subtract an integer to/from a pointer
 (+ or += , - or -=)

– Pointers may be subtracted from each other
– Pointer arithmetic meaningless unless you

know where your data is in memory (e.g. an
array)

– No other arithmetic operators are defined for
pointers

Pointer Arithmetic
•  Example:

 5 element int array on a machine using 4 byte ints
–  vPtr points to first element v[0], which is at location

3000
vPtr = 3000

–  vPtr += 2; sets vPtr to 3008
vPtr points to v[2]

pointer variable vPtr

v[0]

v[1]

v[2]

v[4]

v[3]

3000

3004

3008

3012

3016

location

Pointer Arithmetic
•  Subtracting pointers

– Returns the number of memory
locations that must be traversed to
get from one to the other

 vPtr2 = v[2];
vPtr = v[0];
vPtr2 - vPtr == 2;

i.e.
The difference between the two
pointers.

#include <iostream>
using namespace std;

int main()
{

 int x[10];
 int *test1 = NULL, *test2 = NULL;

 test1 = &(x[0]); // 1st position in the array
 test2 = &(x[3]); // 4th position in the array

 cout << "sizeof(int) is " << sizeof(int) << endl;
 cout << "test1 is " << test1 << endl;
 cout << "test1 + 2 is " << test1 + 2 << endl;
 cout << "test1 - 2 is " <<test1 - 2 << endl;
 cout << "test2 - test1 is " << test1 - test2 << endl;

 return 0;

}

sizeof(int) is 4
test1 is 0012FF58
test2 is 0012FF64
test1 + 2 is 0012FF60
test1 - 2 is 0012FF50
test2 - test1 is 3
returns the number of memory
locations test1 is from test2

Pointer Arithmetic
•  Pointer assignment

– A pointer can be assigned to another pointer
if they are the same type

– If they are not the same type, a cast operator
must be used

– Exception: pointer to void (type void*)
• Generic pointer, represents any type
• No casting needed to convert pointer to
void pointer
• void pointers cannot be dereferenced

Pointer Expressions
•  Pointer comparison

– Use equality and relational operators
– Comparisons meaningless unless pointers

point to members of same array
– Compare addresses stored in pointers
– Example: could show that one pointer

points to higher numbered element of
array than other pointer

– Most common use (pointer == NULL)?
Check to see if pointer points to anything

Relationship Between Pointers and Arrays
•  Array name like constant pointer
•  Accessing array elements with pointers

– Element b[n] is the same as *(bPtr + n)
• Called pointer/offset notation

– Addresses
• &b[3] same as bPtr + 3

– Array name can be treated as pointer
• b[3] same as *(b + 3)

– Pointers can be subscripted (pointer/subscript
notation)
• bPtr[3] same as b[3]

Function Pointers
•  Pointers to functions

– Function pointers contain the address of a
function

– Similar to how array name is address of first
element

– Function name is starting address of the code that
defines the function

•  Function pointers can be
– Passed to functions
– Returned from functions
– Stored in arrays
– Assigned to other function pointers

Function Pointers
•  Calling functions using pointers

– Declare a function pointer like this:
bool (*compare) (int, int)
Where bool is the return type of
your function and int, int are the
argument types

– Execute function with either
• (*compare) (int1, int2)

– Dereference pointer to function to execute
 OR
• compare(int1, int2)

– User may think compare name of actual
function in program

