
1

Today

•  Variable declaration
•  Mathematical Operators
•  Input and Output
•  Lab

–  login to the CIRT UNIX machines
– Start Emacs
– Write HelloWorld.cpp
– Compile HelloWorld.cpp

2

Current Assignments
•  Homework 1 due in 6 days (June 16th)

 Variables, mathematical and logical
operators, input/output, and the “if”
operator.
 (After today and tomorrow’s class you should be
able to do all but problem 6 on the homework.)

•  Project 1 Due in 13 days (June 23rd)

 Write a binomial root solver using the
quadratic equation.

3

Program structure

preprocessor directives
int main()
{
declarations
statements
}

4

Program structure
//preprocessor directives
#include <iostream>
using namespace std;

int main()
{
//variable declarations
int height = 0;
int length = 0;
int area = 0;

//statements
area = height * length;
return 0;
}

5

Comments
•  Comments help people read programs,

but are ignored by the compiler.
•  In C++ there are two types of comments.

– Line comments begin with // and continue for
the rest of the line. (Preferred)

– Delimited comments begin with /* and end
with */

–  /* */ comments are a carry over from C. They
can be useful but are also dangerous.

/* This is a comment
/* This is a previous comment */ */

6

Preprocessor Commands
•  Preprocessor commands provide

instructions to the compiler.
•  They always start with #
•  Example: #include

– Copies source code into the program from
the specified file.

– #include <iostream> contains class
information for input and output.

– #include <cmath> contains code for many
common mathematical functions, such as
square root, cosine, and exponentiation.

7

C++ Data Types

Type Example values
bool true
char ‘5’, ‘a’, ‘\n’
int 25
float 25.0
string “a string value”
(the string data type is defined in
<strings>

8

C++ Data Types
Type Amount of memory reserved

bool 1 byte
char typically 1 byte
float typically 4 bytes
double ≥ float
long double ≥ double
short int ≤ int
int short int ≤ int ≤ long int
long int ≥ int
There are others… long long, unsigned int, etc

9

Overflow and Underflow
•  Overflow

– answer too large to store
– Example: if an “int” is 16 bits the

maximum value it can hold will be 216
or 65536

•  Exponent overflow and underflow

– floats consist of a digit portion and an
exponent portion

– If the exponent is to large and positive
we call it exponent overflow, if too
large and negative then it is underflow

10

Naming entities in C++

•  Identifiers are used to name variables in C
++.

•  Rules for construction of identifiers
– Start with a letter or underscore _
– Consist of letters digits and underscore
– Can not be a reserved word.
– Only first 31 characters used to distinguish it

from other identifiers.
– Case sensitive, r is a different entity from R

11

Variable Declarations

Declarations define memory locations,
including type of data to be stored,
identifer, and hopefully an initial value.

General Form:
data_type identifier_list;

Examples:
 float length = 20.75, width = 11.5, volume;
 int number_of_students = 40;
 int number_of_students(40); also works but is
much less common.

12

Symbolic Constants

•  Used to name values which do not change
during the execution of the program.

•  Are always initialized at declaration.
•  Used wherever an expression is allowed.
General Form:

const data_type identifier = value;

13

  Example 1

int x = 0;
x=5;

Assignment Statements
•  Used to assign a value to a variable
General Form:

identifier = expression;

5

‘a’

  Example 2

char letter = ‘y’;
letter = ‘a’;

‘y’

0
x

letter

14

Assignment Statements

•  Example 3
int x, y, z;
x=y=0;
z=2;

?

x y z
? ?

0 0 ?

0 0 2

0 4 2 y = 4;

x = y + z; 6 4 2

15

Arithmetic Operators
•  Addition +
•  Subtraction -
•  Multiplication *
•  Division /
•  Modulus %

– Modulus returns remainder of division after
the second number is divided into the first

– Examples
5%2 = 1, 2 goes into 5 twice with a

remainder of 1
2%5 = 2, 5 goes into 2 zero times with a

remainder of 2

16

Integer Division

•  Division between two integers results in an
integer:

•  The result is truncated, not rounded
5/3 is equal to 1
3/6 is equal to 0

•  Division with an integer and a floating point
number results in a floating point number:
–  5/3.0 = 1.6666
–  3.0/6 = 0.5

17

Priority of Operators

1.  Parentheses Inner most first
2.  Unary operators Right to left

 (+ -)

3.  Binary operators Left to right
 (* / %)

4.  Binary operators Left to right
 (+ -)

18

Increment and Decrement
Operators

•  Increment Operator ++
•  post increment x++;
•  pre increment ++x;

•  Decrement Operator - -
•  post decrement x- -;
•  pre decrement - -x;

•  For examples assume k=5 prior to executing
the statement.

•  m= ++k; both m and k become 6
•  n = k- -; n becomes 5 and k becomes 4

19

Abbreviated Assignment
Operator

operator example equivalent statement
+= x+=2; x=x+2;
-= x-=2; x=x-2;
= x=y; x=x*y;
/= x/=y; x=x/y;
%= x%=y; x=x%y;

20

Precedence of Arithmetic and
Assignment Operators

Precedence Operator Associativity
1 Parentheses: () Innermost first

2 Unary operators

+ - ++ -- (type)

Right to left

3 Binary operators
* / %

Left ot right

4 Binary operators
+ -

Left ot right

5 Assignment operators
= += -= *= /= %=

Right to left

21

Simple I/O - cin

 cin

•  is an istream object

• streams input from standard input

• uses the >> (input operator)

General Form:
 cin >> identifier >> identifier;

Note: Data entered from the keyboard must be
compatible with the data type of the variable.

22

Simple Output - cout
•  cout

–  is an ostream object

– streams output to standard output

– uses the << (output) operator
General Form:

 cout << expression << expression;
Note: An expression is any C++ expression (string

constant, identifier, formula or function call)

23

output
1,2,
4.5 cm
_

//Example1 for input and output
#include <iostream>
#include <string>
using namespace std;
int main()
{

int i, j;
double x;
string units = “ cm”;
cin >> i >> j;
cin >> x;
cout << “output \n”;
cout << i << ‘,’ << j << ‘,’ <<
endl << x << units << endl;
return 0;

} // Input stream:
1,2,3,4

24

//Example 2 of input and output
#include <iostream>
using namespace std;
int main()
{ int i, j;
 double x, y;
 cin >> i >> j >> x >> y;

 cout << “First output “ << endl;
 cout << i << ',' << j << ',' << x << ',' << y << endl;
 cin >> x >> y >> i >> j;

 cout << “Second output” << endl;
 cout << i << ',' << j << ',' << x << ',' << y << endl;
 return 0;
} //Input stream is:
1 2
3.4 5
2 3 3.4 7

First output
1,2,3.4,5
Second output
3,2,2,3
_

25

Manipulators and methods
•  endl – places newline character in stream and

flushes the buffer.
•  setf() and unsetf()

Flag Meaning
ios:: showpoint display the decimal point
ios::fixed fixed decimal notation
ios::scientific scientific notation
ios::right right justification
ios::left left justification

 Manipulators in <iomanip>
– setprecision(n)
– setw(n)

26

Functions in <cmath>
abs(x) computes absolute value of x

sqrt(x) computes square root of x, where x >=0

pow(x,y) computes xy

ceil(x) nearest integer larger than x

floor(x) nearest integer smaller than x

exp(x) computes ex

log(x) computes ln x, where x >0

log10(x) computes log10x, where x>0

sin(x) sine of x, where x is in radians

cos(x) cosine of x, where x is in radians

tan(x) tangent of x, where x is in radians

27

Characters and input

•  >> discards leading
whitespace

•  Example:
 code user input
 int x;
 char y;
 cin >> x >> y; 39 c
 cin >> x; 42

42

x y
Values in memory

‘c’
39 ‘c’
? ?

