
Current Assignments
•  Homework 2 is available and is due tomorrow

(June 19th).
 Boolean expressions, if statements and the
while loop.

•  Project 1 due in 5 days (June 23rd)

 Write a binomial root solver using the
quadratic equation.

This Time

• Homework 2 Examples
• Break, Continue
•  Switch
• Control Structure Examples
•  30 minute Lab
•  Functions
• Calling functions
• Anatomy of a function

Homework 2, examples

• Boolean Expressions
 if x is true, and y is false
 is this true or false?

 x || y && !y

true || (false && !false) is true

Homework 2, examples

• Boolean Expressions
 if x is true, and y is false

 x && y && !y
false

In fact this is false for all values of x and y
Boolean expressions that are always false
are called “contradictions.”

Homework 2, examples

• Boolean Expressions
 if x is true, and y is false

 x || y || !y

true
In fact this is true for all values of x and y
Boolean expressions that are always true are
called “tautologies.”

Homework 2, examples

• Boolean Expressions
 if x is 9, and y is 3

 !(x < y)
true

Could be rewritten as (x >= y)

Homework 2, examples
•  Boolean Expressions
 for what values of bar and foo is this true?

((foo && !bar) || (bar && !foo)) && foo;

One way to solve this is with a truth table

(Chapter 2, Page 125 of Deitel and
Deitel)

((foo && !bar) || (bar && !foo)) && foo;
foo bar ((foo && !bar) || (bar && !foo)) && foo

true true ((true && !true) || (true && !true)) && true
 (false || false) && true is false

true false ((true&& !false)||(false && !true)) && true
 (true || false) && true is true

false true ((false&& !true)||(true && !false))&& false
 (false || true) && false is false

false false ((false&& !false)||(false&&!false))&&false
(false || false) && false is false

The expression is true only when foo is true and bar is false

(foo||!bar) && (foo||bar) == (foo || (!bar&&bar))
We can use a truth table

foo bar (foo||!bar) && (foo||bar) == (foo || (!bar&&bar))

T T (T || !T) && (T || T) == (T || (!T && T))
 (T && T) == (T || F) is true

T F (T || !F) && (T || F) == (T || (!F && F))
 (T && T) == (T || F) is true

F T (F||!T) && (F||T) == (F || (!T&&T))
 (F && T) == (F || F) is true

F F (F||!F) && (F||F) == (F || (!F&&F))
 (T && F) == (F || F) is true

This is tautology. It is always true.

Break

•  The break command tells the program to
“break” out of the current control
structure

•  Use break sparingly because it disrupts
the regular flow of control and can lead to
spaghetti code.

•  Typically used to quit a loop early
because of some special circumstance not
handled by the loops guard condition.

Break, example

for (int i = 0; i < 10; i++)
{
 if (i == 3)
 {
 break;
 }

}

Continue

•  The “continue” statement when executed
skips to the end of a control structure but
does not exit the control structure.

•  Continue is not commonly used.

Continue, example
for (int i = 0; i < 10; i++)
{

 cout << x;
 if (i > 5)
 {
 continue;
 }
 cout << y;

}

The switch statement

•  The switch statement is a holdover from
C
•  “Switch” can be used instead of “if …

else” as a selection control structure
•  Can only be used when the selection

condition is that some variable is equal to
a whole number

Switch, example 1
int choice = 1;
switch(choice)
{

 case 0: cout << “choice was 0” << endl;
 break;
 case 1: cout << “choice was 1” << endl;
 break;
 case 2: cout << “choice was 2” << endl;
 break;
 default: cout << “unknown choice” << endl;

}

Switch, example 2
int choice = 1;
switch(choice)
{

 case 0: cout << “choice was 0” << endl;
 break;
 case 1: cout << “choice was 1” << endl;

 case 2: cout << “choice was 2” << endl;
 break;
 default: cout << “unknown choice” << endl;

}

Switch, example 3
int choice = 1;
switch(choice)
{

 case 0: cout << “choice was 0” << endl;

 case 1: cout << “choice was 1” << endl;

 case 2: cout << “choice was 2” << endl;

 default: cout << “unknown choice” << endl;
}

Switch, example 4
char choice = ‘t’;
switch(choice)
{

 case ‘a’: cout << “choice was a” << endl;
 break;
 case ‘b’: cout << “choice was b” << endl;
 break;
 case ‘t’: cout << “choice was t” << endl;
 break;
 default: cout << “unknown choice” << endl;

}

Switch, example 5
int choice = 4;
switch(choice)
{

 case 1: cout << “choice was 1” << endl;
 break;
 case 2: cout << “choice was 2” << endl;
 break;
 case 3 || 4: cout << “choice was 3 or 4” << endl;
 break;
 default: cout << “unknown choice” << endl;

}

Switch, example 6
int choice = 4;
switch(choice)
{

 case 1: cout << “choice was 1” << endl;
 break;
 case 2: cout << “choice was 2” << endl;
 break;
 case 3:
 case 4: cout << “choice was 3 or 4” << endl;
 break;
 default: cout << “unknown choice” << endl;

}

Lab
•  Write the program “maxvalue”
•  Finds the maximum of a group of

numbers entered by the user (don’t limit
the number of values you program can
read).

Example run: (user input is in bold)
 Enter number: 8
 Enter another number (y/n)? y
 Enter number: 7
 Enter another number (y/n)? n
 The largest number you entered was 8
Use a “do…while” as you main loop.

