Current Assignments

e Homework 2 1s available and 1s due tomorrow
(June 19th).

Boolean expressions, if statements and the
while loop.

* Project 1 due in 5 days (June 23'9)

Write a binomial root solver using the
quadratic equation.

This Time

 Homework 2 Examples

* Break, Continue

* Switch

» Control Structure Examples
* 30 minute Lab

* Functions

 Calling functions

* Anatomy of a function

Homework 2, examples

* Boolean Expressions
if X 1s true, and y 1s false
1s this true or false?

X||y &&ly

true || (false && !false) 1s true

Homework 2, examples

* Boolean Expressions
1f X 1s true, and y 1s false

x && v && !y

false
In fact this 1s false for all values of x and y
Boolean expressions that are always false
are called “contradictions.”

Homework 2, examples

* Boolean Expressions
1f X 1s true, and y 1s false

X||yll!ly

true
In fact this 1s true for all values of x and y
Boolean expressions that are always true are
called “tautologies.”

Homework 2, examples

* Boolean Expressions
1fx1s9,and y 1s 3

(X <y)

true
Could be rewritten as (x >=y)

Homework 2, examples

* Boolean Expressions
for what values of bar and foo is this true?

((foo && !bar) || (bar && !f00)) && 100;

One way to solve this 1s with a truth table
(Chapter 2, Page 125 of Deitel and
Deitel)

((foo && !bar) || (bar && !100)) && 100;

foo |bar |((foo && !bar) || (bar && !f00)) && foo

true | true |((true && !true) || (true && !true)) && true
(false || false) && true 1s false

true | false | ((true&& !false)||(false && !true)) && true
(true || false) && true is true

false | true | ((false&& !true)l|(true && !false))& & false
(false || true) && false 1s false

false | false | ((false&& !false)||(false& & !false))& &false
(false || false) && false 1s false

The expression is true only when foo is true and bar is false

(foo||!bar) & & (fool||bar) == (foo || (bar&&bar))
We can use a truth table

foo | bar | (foo||!bar) & & (fool||bar) == (foo || (bar&&bar))

T| T |[(T|'T)&&(T||T)=(T||(IT && T))
(T && T) == (T|] F) is true
T | F |[(T||'F)&&(T||F)==(T]|| (IF && F))
(T && T) == (T| F)istrue
F | T |[(F|'T) && (F||T) == (F || (I T&&T))
(F && T) == (F| F) is true

F | F |(F|'F) && (F||F) = (F || ((F&&F))
(T && F) == (F| F)is true

This is tautology. It is always true.

Break

* The break command tells the program to
“break” out of the current control
structure

» Use break sparingly because 1t disrupts
the regular flow of control and can lead to
spaghetti code.

» Typically used to quit a loop early
because of some special circumstance not
handled by the loops guard condition.

Break, example
for (int1=0; 1< 10; 1++)

d

1f (1==3)
!

break:
h

Continue

e The “continue’ statement when executed
skips to the end of a control structure but
does not exit the control structure.

» Continue 1s not commonly used.

Continue, example
for int1=0;1<10; 1++)

d

cout << x;
if (i>5)
d

continue;

j

cout <<y;

j

The switch statement

 The switch statement 1s a holdover from
C

e “Switch’ can be used instead of “if ...
else” as a selection control structure

» Can only be used when the selection
condition 1s that some variable 1s equal to
a whole number

Switch, example 1

int choice = 1;
switch(choice)

d

case 0: cout << “choice was 0~ << endl;
break;

case 1: cout << “choice was 1~ << endl;
break;

case 2: cout << “choice was 2~ << endl;
break;

default: cout << “unknown choice” << endl;

Switch, example 2

int choice = 1;
switch(choice)

d

case 0: cout << “choice was 0~ << end];
break;
case 1: cout << “choice was 1~ << endl;

case 2: cout << “choice was 2~ << endl;
break;
default: cout << “unknown choice” << endl;

Switch, example 3
int choice = 1;
switch(choice)
d
case 0: cout << “choice was 0~ << end];
case 1: cout << “choice was 1~ << endl;

case 2: cout << “choice was 2~ << endl;

default: cout << “unknown choice” << endl;

Switch, example 4

4

char choice= 't ;
switch(choice)

d
case ‘a :cout << “choice was a~ << endl;
break;
case ‘b : cout << “choice was b” << end];
break;
case ‘'t : cout << “choice wast << end]l;
break;

default: cout << “unknown choice” << endl;

Switch, example 5

int choice = 4;
switch(choice)

d
case 1: cout << “choice was 1~ << endl;
break;
case 2: cout << “choice was 2~ << endl;
break;
case 3 || 4: cout << “choice was 3 or 4" << endl;
break;

default: cout << “unknown choice” << endl;

Switch, example 6
int choice = 4;
switch(choice)

d

case 1: cout << “choice was 1~ << endl;
break;

case 2: cout << “choice was 2~ << endl;
break;

case 3:

case 4: cout << “choice was 3 or 4~ << endl;

break;
default: cout << “unknown choice” << endl;

Lab
» Write the program “maxvalue”

* Finds the maximum of a group of
numbers entered by the user (don’ t limit
the number of values you program can

read).

Example run: (user input is in bold)
Enter number: 8
Enter another number (y/n)? y
Enter number: 7
Enter another number (y/n)? n

The largest number you entered was 8

Use a “do...while” as you main loop.

