
Current Assignments
•  Homework 2 is available and is due in three

days (June 19th).

•  Project 1 due in 6 days (June 23rd)
 Write a binomial root solver using the
quadratic equation.

Last Week
•  You used an integrated development

environment (emacs) to write, compile,
and run your program.

•  You wrote C++ programs that:

– Declared variables
– Performed mathematical operations
– Read input, wrote output
– Performed boolean operations
– Made decisions (branched) based on

boolean expressions

This Week
•  You will learn how emacs makes

programming easier (tabify, jump to
error, window control, etc).

•  You will write C++ programs that do

everything the programs from last
week did plus:
– Variable scoping
– Iterative control structures
– Other control structures such as

“switch,” “break,” and “continue.”
– Use all the control structures in concert

Scope of Variables

• The scope of a variable x is the portion of
the program from which x can be “seen.”

• Up to this point we have only placed
variable declarations at the start of the
program so that we wouldn’t have to
worry about scope resolution.

• With iterative control structures scope
starts to become an issue.

Scope of Variables

• Braces are the most common way of
defining the scope of a variable.

• Variables declared after an “{” are

destroyed when the matching close brace
“}” is encountered.

• This allows us to return memory allocated

to variables when we don’t need them
anymore.

Scope of Variables, Example 1

int main
{
 {
 int x = 0;
 }
 cout << x << endl;

return 0;
}

Scope of Variables, Example

int main
{
 int y = 0;
 {
 int x = 0;
 }
 cout << y << endl;

return 0;
}

Nesting Scope

•  Scopes “{ … }” can be nested just like we have
been doing with “if” statements.

Nesting Scope, Example 1

{
int x = 0;
{
 int y = 0;
 // x exists, y exists

}
// x exists, y destroyed
}

Nesting Scope, Example 1
 {

int x = 0;
 {
 int y = 0;
 // x exists, y exits, z does not yet exist
 }
 {
 int z = 0;
 // x exists, y destroyed, z exists
 }

// x exists, y destroyed, z destroyed
}

Shadowing Variables
 Variable scope resolution can become tricky

when there are two or more variables with
the same name in different scopes.

The compiler would not have allowed this:
int x = 0;
int x = 1;
We would have received a “variable

redefinition” warning.
But…

Shadowing Variables
 … it does allow this:

int x = 0;
{
 int x = 1;

}
This is useful because we don’t want to

have to use a different name for every
single variable in a program. Here one x is
said to “shadow” the other.

Shadowing Variables
 If I use “x” at different points in the

program I could be getting different
variables.

int x = 0;
// here x = 0
{
 int x = 1;
 // here x = 1

}
// here x = 0

Shadowing Variables
 When a name is used the name is searched for in

the current scope first, then the scope enclosing
this one, then the one enclosing that one, etc.

int x = 0;
{

 int x = 1;
 {
 int x = 2;
 cout << x;
 }

}

int x = 0;
{

 int x = 1;
 {
 int x = 2;
 }
 cout << x;

}

Other Kind of Variable Scope
 •  There are lots of other kinds of scope rules and

exceptions that we will see throughout the
semester (e.g.):

 Global scope (global variables)
 File scope
 Class scope
 Static Variables

Iteration
 • We can execute any algorithm with just

“if” statements.
• But often we need to repeat the same piece

of code over and over. Sometimes
thousands or millions of times. Writing the
same code with if statements alone in this
case is impractical.

•  Instead we use iterative control structures.
Iteration is simply the process of doing
something over and over.

The “while” loop

• The “while” loop is the most general

type of iteration.
• The “if” control structure said if a

certain condition is true then execute
the following block of code.

• The “while” loop says so long as the
condition is true keep executing the
block of code over and over.

The “while” loop, Syntax

while(boolean_expression)
{
 statements…

}

So long as the boolean_expression is true the

statements will be executed over and over.

The “while” loop, Syntax

while(boolean_expression)
{
 statements…

}

Typically the the block of statements will alter

the boolean_expression such that it will
eventually be false. If this does not happen
an “infinite loop” will occur.

Symptoms of an Infinite Loop

If an infinite loop occurs the same lines of
code are executed over and over forever.
This is a common “run-time” error.

Symptom 1: Your program prints the same

thing over and over in rapid succession.

Symptom 2: Your program appears to freeze

and do nothing. In actuality it is working as
hard as it can but getting nowhere. Be
careful though since your program may just
be waiting for input.

The “while” loop, Examples

int n = 0, x = 15;
while(n < x)
{
 cout << n;
 n = n + 1;

}

int x = 0, n = 15;
int fact = 1;
while(x < n)
{
 x = x + 1;
 fact = fact*x;

}
cout << fact;

The “do …while” loop

• The do … while loop is very similar to
the while loop.

• Where the while loops condition was a
pre-condition the “do … while” has a
post-condition.

 i.e with a while loop the condition is
checked at the start of the loop, a “do…
while” checks at the end.

• The effect is that the loop always
executes at least once.

The “while” loop, Syntax

do
{
 statements…

}
while (boolean_expression);

The statements are executed at least once, then

so long as the boolean_expression is true the
statements will be executed over and over.

The “do …while” loop, Example

int month = -1;
do
{
 cout << “Please input month {1..12}\n”;
 cin >> month;

}
while ((month < 1) || (month > 12));

The “do …while” loop, Example

int x = 0, n = 15;
int fact = 1;
do
{
 x = x + 1;
 fact = fact*x;

}while(x < n);
cout << fact;

int x = 0, n = 15;
int fact = 1;
while(x < n)
{
 x = x + 1;
 fact = fact*x;

}
cout << fact;

The for loop

•  Early programmers used goto statements

to accomplish the same tasks as while and
for loops but there are many different
ways to do the same kind of loop with
goto.

•  For and while loops constrain the sorts of
code you are likely to see and make it
easy to recognize right away what the
programmer is trying to do.

The for loop

•  Anything that can be done with a for loop

can be done with a while loop, and vice
versa.

•  While loops and for loops are equivalent.

The for - while loop equivalence
•  If they are equivalent whey bother with

the for loop?
•  When a programmer uses a for loop it

almost always means they are counting
something: elements in a list, branches in
a tree, it is almost always something
discrete.

•  Programmers use a while loop when the
terminating condition is not so clear, for
example reading input from a user.

The for loop, syntax
for (init_variables; pre-condition; statements)
{

 statements…
}
e.g.

for (int i = 0; i < 100; i++)
{

 statements…
}

Note: i only has scope within the loop

The for loop, syntax
for (init; pre-condition; statements)
{

 statements…
}

Init is executed only once when the loop starts.

Pre-condition and statements are executed on
every loop.

Pre-condition is executed at the start of the loop
and “statements” are evaluated at the end.

The for loop, syntax
for (init; pre-condition; statements)
{

 statements…
}

Init can have multiple declarations and statements can

have many statements separated by commas:

for (int i = 0, j=10; i < j; i += 5, j++)
{

 statements…
}

The for - while loop equivalence
for (int i = 0; i < 100; i++)
{

 statements…
}

int i = 0;
while(i < 100)
{

 statements…
 i++;

}

These two sections of
code do exactly the
same thing

The for loop, syntax
Note: Microsoft Visual C++ 6.0 does not use standard

scoping and for loop syntax. MSVC 6 allows you to
initialize variables in the for loop but not declare
them there. This means they have scope outside the
for loop.

You must write:

{
 int i;
 for (i = 0; i < 0; i++)
 {
 statements…
 }
}

Instead of:

for (int i = 0; i < 0; i++)
{
statements…
}

The for loop, example
int result = 1, base = 2, power = 0;

cin >> power;

for (i = 1; i <= power; i++)
{
 result = result * base;

}
cout << result;

Nested Control Structures
All control structures can be nested in C++.

Typically a program will consist of an outer loop

(usually a “while” loop), that runs the
program over and over until some condition is
met and…

Selection control structures such as “if”
statements that decide which code to run.

Nested Control Structures
for (int i = 0; i < 2; i++)
{

 for (int j = 0; j < 4; j++)
 {
 cout << i << “ ”<< j << “ ”;
 }
 cout << endl;

}
0 0 0 1 0 2 0 3
1 0 1 1 1 2 1 3

