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ABSTRACT

Complex systems are comprised of different components. Interactions and associations among
these components define the functionality of the system. For example, T cells must directly
interact with virally infected cells to kill them. This research characterizes the most relevant
components of complex systems by analyzing interacting relationships using information
theoretic measures. It emphasizes the importance of spatial and temporal dynamics, which occur
when components share spatial proximities or temporal sequences. Novel information theoretic
analyses are proposed for quantifying the degree of association among system components,
which is key to defining the spatiotemporal dynamics. One focus of this work is the application
of these measures to biomedical datasets, bridging the gap between computational science and
life sciences. Another focus is on the visual representation of such interactions, providing a new
scientific lens to understand relevant features of complex systems. The measures are validated
against benchmarks to ensure efficacy and applicability across multidisciplinary fields. This
work advances the fields of computational biology and scientific visualization by providing

novel, robust tools to analyze and interpret complex spatiotemporal interactions.
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Chapter 1

Introduction

Complex systems are characterized by their diverse components and the interactions that occur
among these components. Understanding these interactions is crucial because they often govern
the holistic behavior and functionality of the system. Complex systems can exhibit unexpected
behaviors that emerge from the collective dynamics of their components, rather than from any
single element’s properties. According to Melanie Mitchell, a Complex System is a system in
which large networks of components with no central control and simple rules of operation
give rise to complex collective behavior, sophisticated information processing, and adaptation
via learning or evolution [135].

This complex and emergent behavior is crucial in many multidisciplinary fields including
biology, chemistry, ecology, weather, astronomy, economics, technology, and so on. Research
in dynamic complex systems often utilizes mathematical models, statistical inferences, and
simulations to predict how complex systems respond to changes in interaction patterns, helping
to anticipate the functionality of the system through information flow.

The importance of component interactions in complex systems is further highlighted in
biomedical research, where the failure or success of cellular functions can rely on these
interactions. This study [105] illustrates how systems biology approaches to understanding

cellular interactions can lead to breakthroughs in drug discovery and disease treatment. By



mapping the networks of interactions among proteins, genes, immune cells, and other cellular
constituents, researchers can identify key nodes whose dysfunction may lead to disease. These
interaction maps also help in predicting how the system might respond to specific interventions,
allowing for more targeted and effective therapies. Thus, the study of component interactions in
complex systems not only enhances theoretical understanding but also drives practical advances
in technology and medicine.

Visualizing the interactions within complex systems is very important, as it transforms
abstract data into comprehensible insights. Visualization acts as a bridge between raw computa-
tional data and human understanding, allowing researchers and practitioners to perceive patterns,
anomalies, and critical links that are not readily apparent from numerical data and statistics
alone. For example, in network science, visualizations help identify clusters, central nodes, or
potential points of failure in systems ranging from social networks to infrastructure grids. As
noted in [78], effective visualization tools not only enhance our ability to communicate complex
findings but also significantly improve the decision-making process by providing a clear picture
of the dynamics and structure of complex systems. This work uses widely used statistical mea-
sure: mutual information [173] and its decomposition measures to quantify interactions as well
as capture the visual salience of such interactions. The work starts with quantifying spatial cell
association in the immune system. Then, move to developing frameworks to extract important
features and summarization of such interactions. Next, use an agent-based computational model

to simulate and quantify the spatial damage caused by COVID-19 infection in the lung system.

1.1 Quantifying Spatial Association of Cells in Lymph Node

This work focuses on quantifying the spatial association of cells in lymph nodes. The main
question of the study is how naive T cells interact spatially with key cellular and structural ele-
ments within lymph nodes, specifically dendritic cells (DCs), fibroblastic reticular cells (FRCs),

and blood vessels. This question is important because this association reveals insights about T



cell motility which is a key step in T cell activation and the initiation of the adaptive immune
response, which are critical for fighting infections. This research advances the understanding of
spatial interactions in the immune system. Traditionally, the focus has been on the interactions
between T cells and DCs, but this study broadens the scope to include other structural and
cellular components, using advanced quantitative metrics like the Pearson correlation coefficient
(PCC) [151] and normalized mutual information (NMI).

The study uses two-photon microscopy (2PM) to observe T cells in the lymph nodes and
employs PCC and NMI to measure the extent of spatial association between T cells and DCs,
FRCs, and blood vessels. Remarkably, the study finds that naive T cells are more frequently
associated with FRCs than with DCs, the primary antigen-presenting cells. This suggests that
while T cells are biologically programmed to respond to DCs, the structural environment within
the lymph node, particularly the network formed by FRCs, plays a crucial role in guiding T
cell movement and positioning. We find that FRCs could potentially be as important as DCs
in regulating T cell behavior, an aspect that has been proposed in previous immunological
research [83, 84, ], but there is no quantitative evidence.

An important aspect of the study is its investigation of the role of the chemokine receptor
CCR71in T cell localization within lymph nodes. CCR7 is known to facilitate the homing of T
cells to lymph nodes and their movement within the nodes. Surprisingly, the study shows that
CCRY7 deficiency does not decrease T cell association with DCs. In fact, CCR7-deficient T cells
displayed a slight increase in association with DCs compared to their wild-type counterparts.
This counterintuitive result suggests that while CCR7 enhances T cell mobility, its absence
does not necessarily impede the T cell’s ability to interact with DCs, possibly indicating that T
cell motility and their interactions with DCs are modulated by additional factors beyond just
chemokine signaling.

The methodological approaches in the work, particularly the use of NMI and PCC, provide
a more holistic view of cellular interactions than traditional methods, allowing for a detailed

analysis of how T cells coordinate their movements with the lymph node’s architecture. The



application of these quantitative tools to immunology opens up new avenues for understanding
complex cellular dynamics in a way that was not previously possible.

The findings of this study have significant implications for the development of immunother-
apeutic strategies and vaccines. By illustrating the roles of FRCs and the impact of chemokine
receptor signaling on T cell behavior, this research could lead to novel approaches that enhance
knowledge about immune response. For instance, targeting the interaction between T cells
and FRCs or modulating CCR7-dependent pathways could optimize T cell responses against
pathogens or tumors.

In conclusion, this study enriches the understanding of T cell dynamics within lymph nodes
and highlights the complex interplay between T cells and the lymph node microenvironment.
The findings emphasize the necessity of considering multiple factors, including cellular interac-
tions and structural factors, in the effective activation and function of T cells to initiate immune

responses. This work is published and referenced as [183].

1.2 Information-Theory Based Analysis of Spatio-Temporal
Datasets

In cases of large, multivariate time-varying datasets such as video sequences, weather patterns
over time, or dynamic CT imaging, extracting relevant features that capture both spatial and
temporal characteristics efficiently is crucial. The complexity and size of these datasets demand
sophisticated techniques for feature extraction to enable effective summarization, optimized
storage, and insightful analytics. The primary challenge lies in identifying and extracting salient
regions from these datasets without exhaustive exploration, which is computationally expensive
and time-consuming. Furthermore, summarizing these data dynamically while tracking the
flow of information over time is essential for applications requiring real-time analysis and
decision-making, such as in surveillance systems or real-time biological cell interaction.

Specific Mutual Information (SMI) offers a promising approach to tackle this challenge. SMI



is an information-theoretic measure derived from mutual information, a concept used to quantify
the amount of information obtained about one random variable through another. This measure is
particularly suited for spatiotemporal multivariate datasets where understanding individual data
values’ contribution towards spatial associations or disassociation among multiple variables
over time is important. SMI can be utilized to identify areas within the dataset that hold
the most ’informative’ value — essentially regions where the occurrence of specific features
significantly reduces uncertainty in other parts of the dataset. SMI emphasizes important
regions in the variables where statistical multivariate properties exist. This measure can
automatically highlight regions with interesting relationships (e.g. high surprise regions,
high/low predictable regions). This measure also aligns well with the need for dynamic
spatiotemporal data summarization, as it allows for the extraction of concise yet informative
summaries of the data, facilitating both storage optimization and enhanced understanding of the
underlying processes.

Frameworks developed in this work using SMI analysis of multivariate time-varying images

aim to achieve the following:

* Automatic identification of salient regions that reduces the cost of exploration in large

datasets.

* Dynamic spatiotemporal data summarization using information fusion for storage opti-

mization.

 Tracking information flow to monitor and analyze the evolution of data over time is
crucial for tasks that depend on understanding temporal dynamics, such as predictive

modeling and anomaly detection.



1.2.1 Information-theoretic Exploration of Multivariate Time-Varying

Image Databases

With the use of high-performance computational resources in scientific research, the generation
of large multivariate time-varying datasets is common, with applications spanning climate
modeling to dynamic medical imaging. As these datasets grow in size and complexity, traditional
analysis and storage methods become inadequate due to the inability to efficiently process and
extract meaningful information from vast amounts of data. This challenge necessitates the
development of advanced techniques that can facilitate the rapid exploration and analysis of
such datasets.

One promising approach is to use information theory-based approaches namely Specific
Mutual Information (SMI) which is effective for exploring multivariate datasets. It quantifies
the shared information between pairs of variables and reveals how specific values within
these variables contribute to this shared information. This makes it valuable for detecting
interdependencies and dynamic changes within the data, providing insights that are essential
for many scientific and engineering applications.

The Cinema project [5] exemplifies an innovative application in managing large-scale scien-
tific datasets. Cinema databases store visualizations of simulation data, allowing researchers
to interactively analyze data through image-based techniques. By incorporating SMI-based
measures in the Cinema database, the opacity of the images is modulated emphasizing regions
of high informational significance. This method effectively reduces the volume of time and
resources scientists need to analyze manually, by automatically highlighting areas with strong
multivariate relationships.

This work shows that the technique has practical implications in several fields. In weather
science, for example, in the case of a hurricane dataset, it can be used to identify and track
evolving meteorological phenomena, such as the formation and movement of the hurricane’s

center. In combustion science, it helps extract regions within a combustion chamber where



chemical reactions are most intense.

An essential component of this approach is the interactive visualization tool, CinemaView,
which supports the analysis by providing a user-friendly interface for navigating through time-
varying data. Users can compare different time steps and variables side-by-side, adjusting
visualization parameters to suit their specific analysis needs.

The integration of the SMI framework into Cinema databases represents a significant
advancement in the analysis of multivariate time-varying datasets. It enhances the efficiency of
data exploration and improves the accuracy of feature detection, which is critical for domain

experts to make informed scientific decisions. This work is published and referenced as [185].

1.2.2 Dynamic Spatiotemporal Data Summarization using Information

Based Fusion

With the rise of supercomputing capabilities, the volume of data produced has soared, intensi-
fying storage and I/O overheads that present significant challenges in data management and
storage. This work addresses these challenges using a dynamic spatiotemporal data summa-
rization technique. This technique leverages Specific Mutual Information (SMI) to effectively
reduce data storage demands while preserving critical information dynamics within datasets.
The approach is distinct in retaining both raw and summarized timesteps, ensuring that no
critical information is lost in the summarization process.

The core of the method involves the identification of informative and redundant timesteps
within time-varying datasets. Informative timesteps are preserved, while redundant ones are
fused using SMI-guided fusion techniques. This optimizes storage without sacrificing data
integrity. This process streamlines data handling and enhances visualization capabilities,
enabling users to track and analyze information change over time more efficiently.

The versatility of the proposed technique is demonstrated through its application to varied
datasets, including particle-based flow simulations, security surveillance systems, and biological

cell interactions. For example, in security and surveillance, the method allows for the efficient



summarization of lengthy video sequences, highlighting only those periods where significant
activity occurs, thereby optimizing storage and improving the manageability of surveillance
data. An integral component of the research is the holistic representation of the fused timesteps.
This enables minimal data loss allowing for detailed examination of specific data points over
compressed intervals.

The proposed summarization technique significantly impacts data management practices
across multiple disciplines by reducing the computational and storage overhead associated with
large datasets. It is applicable to both in situ and post hoc data analysis contributing to deeper
insights in various scientific and technological fields. This work is submitted for review and

archived [184].

1.3 Analyzing Spatial Features of SARS-CoV-2 Infection

Spread in Lung using CT Scans and SIMCoV Model

The COVID-19 pandemic has emphasized the critical need for advanced tools to understand
and predict the dynamics of viral infections, particularly in the respiratory system. Computed
Tomography (CT) scans have been instrumental in diagnosing and assessing the severity of
SARS-CoV-2 infections, revealing characteristic patterns of lung damage such as ground
glass opacities (GGOs) [15,51] and consolidations [82]. These imaging features represent
the multifocal distribution of lung lesions and the associated tissue damage, typically due to
inflammatory responses. We want to understand the underlying properties of lung damage and
the cause of variability across patients. We use a simulation framework of the SARS-CoV-2
infection dynamics to explain the observable conditions in the CT scans.

The Spatial Immune Model of Coronavirus (SIMCoV) [137], is an advanced computational

framework designed to simulate SARS-CoV-2 infection in the lungs at a cellular level. Unlike
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Figure 1.1: SIMCoV model components and their interactions. Epithelial and T cells are
represented as agents; virions and inflammatory signals are represented as concentrations.
Numbered transitions are described in the Materials and Methods Section of [137]

traditional Ordinary Differential Equation (ODE) models, SIMCoV employs an agent-based
modeling approach, allowing for the detailed simulation of viral spread and immune response
across hundreds of billions of cells. SIMCoV is the perfect groundwork to analyze and predict
the spatial dynamics of COVID-19 in the lung as observed in CT scans.

The SIMCoV model simulates the dynamics of SARS-CoV-2 infections to understand the
viral spread dynamics through tissue. It affects lung epithelial cells and examines how the
timing and location of immune cells (T cells) influence the spread in the lungs. The components
of the model and their interactions are visualized in Figure 1.1 which is referenced from [137].
SIMCoV demonstrates the initial spatial distribution of the virus in the lungs, explains the rates
and patterns of viral spread through lung, and analyzes T cell counts and movement patterns,
influenced by lung architecture.

Utilizing advanced high-performance computing methods and resources, SIMCoV simulates

the viral spread over time using different model configurations. SIMCoV effectively replicates



the viral growth dynamics observed in patients and is the first model to demonstrate how
spatially dispersed infections lead to increased viral loads. It also highlights how the timing
and strength of the immune response can influence viral dynamics and controls. SIMCoV is an
efficient model to understand the within-host dynamics of SARS-CoV-2 infection. The model
and simulations suggest that the number of independent infection sites within the lungs is a
key driver of peak viral load. The spatial dispersion of the inflammation caused by the virus
may be particularly important for SARS-CoV-2 and other lung infections due to the extensive
epithelial surface area of the lungs. Therefore, for analyzing spatial features of SARS-CoV-2
infection spread in the lung using CT scans, we are comparing the spatial characteristics of
inflammatory signal spread within the alveolar sac structure, simulated by SIMCoV. SIMCoV
allows us to investigate why the spread of infection and lung damage vary across patients and
appears patchy in many cases.

The multifocal nature of SARS-CoV-2 infection leads to heterogeneous patterns of lung
damage, making the disease progression unpredictable in many cases. Current modeling ap-
proaches, while useful, often fail to capture the spatial complexities of the infection. SIMCoV’s
spatially explicit modeling capability presents a unique opportunity to bridge this gap by pro-
viding a detailed, scalable platform for studying viral and immune dynamics.

By comparing the spatial features of lung damage observed in CT scans with those generated
by SIMCoV, we can enhance our understanding of the initial conditions leading to varying
levels of severity in patients. This comparison will also help in refining SIMCoV’s parameters

to better replicate and eventually predict individual patient outcomes based on early CT scans.
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Chapter 2

Background

This chapter discusses the background of some concepts and related works that have been used

in the research scope .

2.1 Information Theory Based Approaches and Concepts

Information theory tools [49] have been used extensively for solving problems across com-
putational domains. Information theory provides information content for a variable and can
measure similarity. From Shannon’s paper [ 73], it can be stated that information is a defined
measurable quantity. According to Claude Shannon in 1948: “A basic idea in information
theory is that information can be treated very much like a physical quantity, such as mass or

energy.”

2.1.1 Entropy

Entropy measures the amount of information in the probability distribution of a random variable
[173]. It indicates the uncertainty in the outcome of an event. Entropy can be understood by
considering a coin toss. The probability of heads is p(x) = % and the probability of tails is

p(y) = 1. The entropy His — (1 x log, (%) + 1 x log,(3)). Since log, (1) = —1,H=1 bit.
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The formula for calculating entropy is:

H(r) = =) p(r)log,p(r), (2.1)

r

where H(r) is the entropy of variable r and p(r) is the probability of r occurring. Here we use
log, so that entropy is measured in bits, the unit of information. The expression is negated
because the log, of probabilities (which are always less than or equal to 1) is always negative

or Z€ro.

2.1.2 Joint Entropy

We use joint entropy to measure the uncertainty in the outcome of two variables:

H(r,g) ==Y Y p(rg)log,p(rg) (2.2)

r-8

where p(r,g) is the joint probability distribution function of r and g.

2.1.3 Mutual Information (MI)

Mutual Information (MI) is one of the well-known measures to quantify the mutual correlation
between two variables. Mutual information quantifies the total amount of information overlap
between two variables, i.e., if we observe a certain variable, then MI tells us how much
uncertainty has been reduced regarding the information of another variable. Given two random

variables X and Y, MI I(X,Y) is formally defined as:

1,7)= Y Y p(x,) log PHY)_ 2.3)

yeY xeX p(X)p(y)

where p(x) and p(y) are the probabilities of occurrence of values x for X and y for Y respectively
and p(x,y) is the joint probability of occurrence of values x and y together.

MI can also be calculated using entropy one variable and the joint entropy of two variables
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using 2.4.

MI(r,g) = H(r) +H(g) —H(r,g) (2.4)

Intuitively, this formula calculates MI by subtracting the joint entropy of r and g from the total
entropy in both r and g, which leaves the overlap in entropy of r and g.
MI quantifies the total association or disassociation between two variables and provides a

single value in bits.

2.1.4 Normalized Mutual Information (NMI)

We normalize MI by dividing by the minimum of the internal entropies, since it provides an

upper bound on MI, for a proof see [87].

MI

= min(H(r). H(g)) ()

The value of NMI is bounded between O and 1.

2.1.5 Specific Mutual information

MI can be further decomposed into specific mutual information (SMI) measures to quantify
individual data values’ contribution towards such association or disassociation. For specific
scalar values x € X, SMI computes the information content of x when another variable Y is
observed. In this case, X is called the reference variable and Y is called the target variable.
Knowledge about the scalar values in the reference variable can increase knowledge about the
target variable. This increase in information or decrease in uncertainty helps in identifying
important regions in the float-image data. MI can be decomposed in multiple ways to obtain
several SMI measures and we focus on two such SMI measures, Surprise and Predictability,

[26,55] for finding different types of multivariate characteristics between variable pairs.
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SMI measure Surprise: /;(x;Y)

The Surprise measure quantifies the change in the information content in the occurrences of the
target variable after observing individual scalar values of the reference variable which has the
potential of providing information which would seem improbable otherwise, hence the name
surprise [26,55]. The regions where data values have higher surprise values can be informative.

For two random variables X and Y, surprise is denoted as /; and presented as:

()= T ok s p}f{;)) 2.6)

where x € X is the reference variable and y € Y is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the conditional probabilities of values y given values
x. Surprise is always positive as it is the distance between p(y|x) and p(y). A high I, (x;Y)
implies that after observing the reference variable x, some low probability values of y € Y have

become more probable.

SMI measure Predictability: I(x;Y)

The Predictability measure provides us with the amount of increase/decrease in uncertainty
about the target variable after observing the reference variable [26,55]. This quantification of the
uncertainty change helps to identify statistically significant regions in the images. Predictability

is denoted as I and can be computed as:

L(xY)=—Y p(»logp(y)+ Y, p(y[x)logp(ylx) 2.7)
yey yeY

where x € X is the reference variable and y € Y is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the conditional probabilities values y given values x.
Based on the amount of information increase and decrease, I can be both positive and negative.

A high positive I;(x;Y) value indicates that the uncertainty of target variable Y has decreased
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when value x is observed. On the other hand, a high negative I (x;Y) value indicates that the
uncertainty of target variable Y has actually increased. According to information theory, data
values that are less probable or unpredictable contain more information representing salient

regions in the data with diverse characteristics that are worth deeper exploration.

2.2 Information Theory for Data Analysis and Visualization

The use of information theoretic measures [49, ] to solve data analysis and visualiza-
tion problems is well-known. Mutual information has been used to perform data registra-
tion [47,92,94, , ], view selection [194], estimation of surface similarities [90], shape
complexity [161], and for quantifying information transfer from data to image space [28]. For
exploring similarities among level-sets, information theory has also been used [32,203]. Various
decomposition of mutual information, called specific mutual information measures have become
recently popular for fusing multi-modal data [27], analyzing isosurface uncertainties between
variable pairs [23], and designing transfer functions [25]. Point-wise mutual information is
also applied to quantify important data value combinations from time-varying data [66], and
for retrieving opposite information from a given variable pair [91]. For a detailed review of
information theory applications in data analysis and visualization, interested readers are referred

to [42,43, , ].

2.3 Time Step Selection and Data Summarization

Detection of key time points in a data set is an important problem for time-varying data analysis.
Several approaches have been proposed for key time step detection for large time-varying data
sets [187,220]. These techniques assume the availability of all the time steps. When the storage
of all time steps is not possible, real-time techniques are required so that they can be applied in
situ. Myers et al. [ 142] proposed an in situ streaming regression-based strategy for detecting

salient time points. To enable adaptive in situ workflow during the simulation run, Maher

15



et al. [165] proposed a trigger-based solution for combustion simulations. These techniques
generally allow the detection of key time points and do not offer any data summarization
capability.

The computer vision community has developed several techniques for doing spatio-temporal
fusion of large data obtained from different sources. These approaches do not necessarily
combine time steps based on the key time points. Pulong and Kang proposed a technique for
fusing temperature data obtained from MODIS and AMSR-E instruments using a dynamic
fused Gaussian process [124]. Nguyen et al. [145] developed a technique for summarizing
large spatio-temporal images obtained from remote sensing applications. In a recent work,
Shah et al. [171] proposed an algorithm for real-time summarization of data streams for smart
grid applications. Compared to the above techniques, the proposed method is different in the
sense that our method needs to work in situ under strict memory and computational resource
constraints and is primarily developed for very large-scale three-dimensional scientific data
sets. The proposed method aims at identifying the key time steps based on some user-provided
criteria and then generate summaries for the intermediate non-key frames so that the reduced
output data can store a holistic view of the entire simulation data allowing flexible post hoc

analysis and visualization.
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3.2 Abstract

T cells play a vital role in eliminating pathogenic infections. To activate, naive T cells search
lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells in LNs is

influenced by chemokines including CCL21 as well as multiple cell types and structures in
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the LNs. Previous studies have suggested that T cell positioning facilitates DC colocalization
leading to T:DC interaction. Despite the influence chemical signals, cells, and structures can
have on naive T cell positioning, relatively few studies have used quantitative measures to
directly compare T cell interactions with key cell types. Here we use Pearson correlation
coefficient (PCC) and normalized mutual information (NMI) to quantify the extent to which
naive T cells spatially associate with DCs, fibroblastic reticular cells (FRCs), and blood vessels
in LNs. We measure spatial associations in physiologically relevant regions. We find that T
cells are more spatially associated with FRCs than with their ultimate targets, DCs. We also
investigated the role of a key motility chemokine receptor, CCR7, on T cell colocalization with
DCs. We find that CCR7 deficiency does not decrease naive T cells association with DCs, in
fact, CCR77" T cells show slightly higher DC association compared with wild type T cells.
By revealing these associations, we gain insights into factors that drive T cell localization,

potentially affecting the timing of productive T:DC interactions and T cell activation.

3.3 Introduction

The adaptive immune response depends on T cell interactions with DCs in the paracortex, or T
cell zone, of LNs. The rate at which naive T cells sample DCs determines how fast the immune
system can mount a response to infection [ 1 34]. The development of imaging methods such
as two-photon microscopy (2PM) and histocytometry have enabled direct observation of cell
locations in tissues. Many studies showing the relative location of T cells and DCs suggest that
they are both positioned in the LN to maximize the likelihood of T:DC interactions [30,209].
Despite advances in the ability to image and observe T cells in LNs, few studies make direct
quantitative comparisons of how closely T cells associate with multiple other cells types in
LNs.

T cells enter the paracortex of the LN from small post-capillary blood vessels termed high

endothelial venules (HEVs). T cells, DCs and FRCs occupy this region along with blood vessels
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(BVs). T cells move amongst DCs, FRCs, and other T cells to interact with DCs presenting
antigen. FRCs are stromal cells that encapsulate a collagen fiber conduit network which allows
for transport of lymph fluid carrying soluble antigen and chemokines [12, 88, 148, 176]. FRCs
produce the chemokine CCL21, which has an established role in naive T cell homing into the
paracortex from blood vessels [178, 197]. FRCs also provide structural support required for
efficient T cell activation [147]. [13] showed the FRC network is closely associated with naive
T cells moving within the paracortex, suggesting that FRCs may provide a network on which T
cells migrate.

There are several hypotheses regarding the role of individual cell types in mediating T:DC
interactions. HEVs are the entry points for T cells entering the LN. [85] suggests that DCs
gather near HEV's to maximize their contact rate with incoming T cells. Others have suggested
that DCs may congregate at the intersections of the FRC network, allowing T cells that travel
along the edges of the network to encounter T cells at an increased rate [59,99,186,217]. Spatial
interactions between T cells and blood vessels, FRCs, and DCs are important if they change
how T cells move through the paracortex and the timing of encounters with antigen-presenting
DCs, the key step in T cell activation and the initiation of the adaptive immune response.

In addition to structural and cellular cues, chemical mediators, including chemokines,
contribute to T cell motion and T:DC contacts in the LN. For example, the signaling molecule
LPA produced by FRCs has been shown to mediate rapid T cell motion in LNs [182]. In
addition, C-C chemokine receptor type 7 (CCR7), the receptor recognizing CCL21, is important
for high speed T cell motility in the LN [10, 112]. While CCR7 increases T cell movement
speed in LNs, whether CCR7 impacts T:DC contacts has not been investigated.

Understanding the contribution of cellular and structural LN components to T cell local-
ization requires a quantitative metric that allows direct comparisons of spatial associations
of multiple cell types. Several other groups have reported spatial relationships between cells
and structures using methods such as visual inspection [85, 131] and comparison of turning

angles of T cell movements with structures [ 13, 138]. However, none of these directly compare
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associations between multiple cell types or structures with a consistent quantitative metric.

In this study, we use both the Pearson correlation coefficient (PCC) [3, | 8] as well as mutual
information (MI) [173] to compare the spatial association of multiple cell types and structures.
PCC measures the covariance of homologous pixel intensities, and has been often used to
determine colocalization, particularly of fluorescent proteins, in multiple biological systems
including the study of T cells [57,61]. PCC and MI can be calculated without the need to
identify individual cell boundaries which can be difficult for 2PM images.

Ml is an application of Shannon entropy (which measures the amount of uncertainty about
the value of a random variable in bits) originally defined to understand limitations on signal
processing and communication [173]. MI quantifies the reduction in uncertainty about one
variable when one knows the value of another variable. In analyzing spatial associations, we
measure the reduction in uncertainty about the location of one cell type given the location
of another cell type. MI has been successfully used in other biomedical image processing
applications, particularly in measuring image similarity in X-rays and MRIs for automated
image registration [ 104, , , ]. Further, MI and other information theoretic measures
are increasingly recognized as powerful tools for analysis of non-linear complex systems,
including complex biological systems such as the immune system [ 120, 155]. In this paper, we
use MI to quantify the spatial association of T cells with other cell types (e.g., DC or FRC).
We use MI as a measure of spatial association that is independent of specific types of cells
or structures. Additionally, MI is theoretically insensitive to coarse graining [54]. Thus, MI
can measure the amount of spatial dependence of one fluorescent marker on another while
minimizing observational bias. MI, unlike distance measures such as nearest-neighbor analysis,
is parsimonious, since it does not require extensive image processing to remove photon noise
and determine cell boundaries. Instead, MI can operate on the image directly without the
introduction of thresholds. In preliminary work we used MI to quantify the association of T
cells and DCs and found less correspondence between T cell and DCs than expected [79].

However, MI is not comparable across images with different sizes and amounts of fluores-
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cence. In this study, we use normalized mutual information (NMI) [87, ] that scales MI to
be between 0 and 1, which allows quantitative comparisons of spatial associations between cells
fluorescing in one color channel and another cell type fluorescing in a different color channel
across experiments [48, , , ]. Since PCC and NMI are both pixel based methods that
do not correspond to cell sizes, we create regions within the images that match cellular scales
and apply PCC and NMI. Analyzing regions as well as pixels allows these methods to capture
associations at biologically relevant scales. Both regional PCC and NMI analyses show T cells
associate much less with their ultimate targets, DCs, than with FRCs. Our results also show that
CCR7 does not increase T cell association with DCs. Our study uses quantitative metrics to
directly compare spatial association of T cells with other cell types in lymph nodes, revealing

insights into T cell search.

3.4 Methods and Materials

3.4.1 Mice and Reagents

Experiments were performed with C57BL/6 mice (Jackson Laboratories), B6.Ubiquitin-GFP
mice (Jackson Laboratories), B6.CCR7”" mice (Jackson Laboratories) and B6.Cg-Tg(Itgax-
Venus)1Mnz/J mice (Jackson Laboratories). Both female and male mice were used between
8-20 weeks of age. Breeding, maintenance, and use of animals used in this research conform
to the principles outlined by the Institutional Animal Care and Use Committee (IACUC). The
IACUC at the University of New Mexico approved the protocol for animal studies (protocol
number 16-200497-HSC). Anesthesia via ketamine and xylazine was performed during mouse
injections, and euthanasia was administered via isofluorane overdose followed by cervical
dislocation. For blood vessel staining, DyLight 594 labeled Lycopersicon Esculentum (tomato)
lectin (Vector Laboratories) was used at a dose of 70 ug per mouse. To isolate naive T cells,
Pan T Cell Isolation Kit II (mouse, Miltenyi Biotec, 130-095-130) was used according to

manufacturer’s instructions. To fluorescently label naive T cells, CellTracker™Orange (5-(and-

22



6)-(((4-chloromethyl)benzoyl)amino)tetramethylrhodamine) (CMTMR) Dye (ThermoFisher
Scientific, C2927) was incubated with naive T cells at a final concentration of 5 uMm at 37 °C
for 30 min before being washed. Labeled naive T cells were then immediately adoptively

transferred into recipient mice.

3.4.2 Mouse procedures

For all images: 107 naive T cells were adoptively transferred into mice 14-16 hours prior to LN
harvest for imaging by 2PM. For T:DC images: T cells from naive wild type (WT) mice were
labeled with orange vital dye CMTMR and adoptively transferred into naive CD11c-yellow
fluorescent protein (YFP) mice in which all CD11c™ DCs are YFP". For T:BV images: T
cells from naive Ubiquitin-green fluorescent protein (GFP) mice were adoptively transferred
into naive C57B1/6 recipient mice. DyLight 594-labeled L. Esculentum (tomato) lectin was
injected intravenously into the recipient mice 5 min before harvesting the LNs for imaging.
The fluorescent lectin binds to glycoproteins on blood vessel endothelial cells and emits red
fluorescence. For T:FRC images: T cells from naive WT mice were labeled with CMTMR and
adoptively transferred into Ubiquitin-GFP recipient mice that were lethally irradiated (10 Gy).
The mice were reconstituted with C57B1/6 bone marrow 4 weeks prior to T cell adoptive
transfer. In this chimeric mouse model, the stromal cell populations fluoresce GFP while the

hematopoietic cell populations are non-fluorescent.

3.4.3 Two-Photon Microscopy set up

Two-photon microscopy was performed using either a ZEISS LSM510 META/NLO microscope
or Prairie Technologies Ultima Multiphoton microscope from Bruker.

Prairie Technologies Ultima Multiphoton microscope from Bruker: A Ti-Sapphire (Spectra
Physics) laser was tuned to either 820 nm for excitation of CMTMR or 850 nm for simultaneous
excitation of YFP and CMTMR, GFP and DyLight 594, or GFP and CMTMR excitation. The

Prairie system was equipped with galvo scanning mirrors and an 801 nm long pass dichroic to
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split excitatory and emitted fluorescence. Emitted fluorescence was separated with a 550 nm
long-pass dichroic mirror. Fluorescence below 550 nm was split using a 495 nm dichroic and
filtered with 460/60 nm and 525/50 nm filters before amplification by photo-multiplier tubes.
Fluorescence above 550 nm was split with a 640 nm long-pass dichroic mirror before passing
through 590/50 nm and 670/50 nm filters before amplification by GaAsP photo-multiplier tubes.
A UMPIanFLN 20x water immersion objective (0.5 numerical aperture) was used. Prairie View
5.4 software (Prairie Technologies) was used to acquire time-lapse z-stacks.

ZEISS LSM510 META/NLO: Chameleon Ti:Sapphire laser tuned to 850 nm (Coherent)
was used for excitation of either GFP and CMTMR, YFP and CMTMR, or Dylight 594 and
GFP. A 560 nm dichroic mirror and 500-550 nm and 575-640 nm bandpass filters were used for
detection of fluorophores. Movies were captured with the ZEN user interface (Zeiss). In both
imaging systems, Z-stacks with step size of 4 um were repeatedly imaged over time to obtain
movies of 10-45 min in duration. All analyses were performed on 2D image z stacks captured

by 2PM.

3.4.4 Lymph node preparation for live imaging

After euthanasia, LNs from mice were surgically dissected and transferred to a Chamlide
AC-B25 imaging chamber (Live Cell Instruments) with a customized coverslip platform to
allow flow beneath the LN. The LN was stabilized with a tissue slice harp (Warner Instruments)
and superfused with oxygenated Dulbecco’s Modified Eagle’s Medium (Gibco, 21063-045) and
maintained at 37 °C. For experiments in which blood vessels were imaged in conjunction with T
cells or DCs, with 70 ug DyLight 594-labeled lectin (from L. Esculentum, Vector Laboratories)

was intravenously administered by tail vein injection 5 min before euthanasia.

3.4.5 Calculation of Mutual Information

MI measures how much the value of one variable tells us about the value of another variable.

In this study, MI is used to quantify how much the locations of DCs, FRCs and blood vessels
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reveal about the locations of T cells. We calculate the MI of color intensities resulting from
2PM imaging of two cell types. Each image is composed of a sequence of 2-color 3D images.
In these images one cell type is dyed red and another green. We calculate the MI of the red and
green channels from every image to determine the association of the corresponding cell types
for that image.

The 2PM images contain red, blue and green channels. For every time step, we extract the
red and green channels into two separate 3D images r and g.

The 2PM images contain red, blue and green channels. For every time step we extract the
red and green channels into two separate 3D images r and g.

The MI calculation procedure can be summarized in the following 3 steps:

1. We calculate the entropy of variables in Xi and Y image r and image g: H(r) and H(g).

This measures the uncertainty of the color intensity in each image.

2. We calculate the joint entropy H(r, g) which measures the uncertainty about the color

intensities in corresponding positions in both images.

3. We calculate MI as the sum of the entropies of the individual images H(r) and H(g)
minus the joint entropy of the two images H(r, g). This reveals how much uncertainty
about the color intensity and location of one cell type (i.e., T cells) is reduced when we

know the color intensity and locations of the other cell type.

Entropy

Entropy measures the amount of information in the probability distribution of a random variable
[173]. It indicates the uncertainty in the outcome of an event. Entropy can be understood by
considering a coin toss. The probability of heads is p(x) = % and the probability of tails is

p(y) = 5. The entropy H is — (3 x log, (%) + 1 x log,(%)). Since log, (1) = —1,H =1 bit,
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The formula for calculating entropy is:

H(r) = =) p(r)log,p(r), (3.1)

r

where H(r) is the entropy of variable r and p(r) is the probability of r occurring. Here we use
log, so that entropy is measured in bits, the unit of information. The expression is negated
because the log, of probabilities (which are always less than or equal to 1) is always negative
or zero.

Entropy is maximized for a random event in which the probabilities of all outcomes are
equally likely (all N possible outcomes have a probability of occurrence of Il\,) leading to an
entropy of log,(N) bits. Entropy is minimized for a completely predictable event in which one
outcome has a probability of occurrence equal to 1, and all other outcomes have O probability
of occurrence, leading to an entropy of zero.

We calculate the entropy of color intensities in the red and green images. Each image has
256 possible color intensities for both the red and green images. Thus the maximum H(r) and
the maximum H(g) is log,(256) = 8 bits which would occur if each of 256 color intensities

were equally likely.
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Figure 3.1: Illustration of low, medium and high MI. Simulated images of 500 red and 500
green cells are shown in (A), (B) and (C). Each cell is 11 x 11 pixels (square shaped) where the
red cells are placed some distance from green cells, following a Gaussian distribution with mean
0, and a specified standard deviation, o. The color intensity of each cell is chosen uniformly at
random. However, each pair of green cells and red cells share the same color intensity. In (A),
the red and green cell placements are uncorrelated and uniform randomly distributed. In (B),
the placements of red and green cells are partially correlated (o=5). In (C), the location of red
and green cells are identical (6=0). (D-F) are set diagrams indicating the shared information
between red and green channels. In (D), the two color channels are independent since cell
locations are uncorrelated with each other providing minimum MI. In (E), the two images are
partially correlated which increases the MI, shown by the yellow shaded region. In (F), the two
images are completely correlated maximizing the MI of the two color channels, resulting in
complete intersection of the information in the red and green channels (yellow region). (G),
(H), and (I) are joint probability tables for images (A), (B), and (C) where 256 color intensities
are binned into 4 color intensities for purposes of illustration, resulting in a 4 x 4 probability
table. In (G), the probability values are low and evenly spread across the table, except for the
upper left corner, indicating overlap in the space with no cells (MI = ;0.001). In panel (H), the
probability values are higher along the diagonal than in other parts, indicating partial correlation
in the placement of red and green cells (MI = 0.0320). In (I), there are probability values on the
diagonal only and the probabilities off the diagonal are O since there is complete correlation in
the placement of red and green cells (MI = 0.8610). The calculation of entropy H(r) and H(g),
joint entropy H(r, g), and MI are shown for each case.

Joint Entropy

We use joint entropy to measure the uncertainty in the outcome of two variables:

H(r,g) =—Y.) p(r,g)log,p(r,g) (3.2)

r-8

where p(r, g) is the joint probability distribution function of r and g.

The two variables may be unrelated. For example, the joint entropy in the outcome of
tossing a fair coin twice is calculated from the probabilities of four possible events [heads,
heads], [heads, tails], [tails, heads] and [tails, tails]. The probability of each event is 4—11, resulting
in a joint entropy of 2 bits. Since the events are independent, the joint entropy is equal to the
sum of the entropies of each individual coin toss.

Alternatively, two variables could be related. In the extreme case, two variables could be
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completely correlated so that the value of one variable gives perfect information about the
value of the other variable. For example, if the second coin toss occurred by picking up the
coin and placing it back on the table with the same face up as before, then the probabilities of
events [heads, heads] and [tails, tails] are both % and the probabilities of [heads, tails] and [tails,
heads] are both zero. The joint entropy is 1, and equal to either of the individual entropies.

In our analysis of fluorescent images we are interested in the co-occurrence of red and
green colors. That is, we wish to know whether knowing the color intensity of green pixels
tells us anything about the color intensity of red ones in the same location. We calculate the
probabilities of all possible color intensities (0 to 255) in all corresponding locations of the red
and green images. We define the joint probability p(r,g) as the probability of each pair of color
intensities (0 to 255) occurring in the corresponding location in the red and green images. There
are 256x256 = 65,536 possible combinations of color intensities. We calculate the number
of times every intensity combination occurs in corresponding locations in an image. Then we
divide by the total number of locations in the images to turn those occurrences into probabilities.
These probabilities are entered in Equation (3.2) to calculate the joint entropy.

The joint entropy is low when color intensities repeatedly co-occur. Note that, joint entropy
can be low when either the same color intensities repeatedly overlap, or when different color
intensities overlap. For example, if red systematically has lower intensity than green, joint
entropy would still be low if a green intensity of, say, 220 was frequently co-located with a red
intensity of 180. Joint entropy only depends on the frequency of pairs of values co-occurring
in the same locations. Joint entropy is high when there is no association in color intensities
between the red and green images. Thus, in Figure 3.1(A) where red and green cells are
uniformly randomly distributed, there is minimal co-occurrence of the intensities, and therefore
all values in the probability table are low and uniformly distributed. In contrast, when red
and green cells co-occur with the same intensities in the same locations (Figure 3.1(C)), the
probabilities on the diagonal are high leading to the minimum possible joint entropy. We

observe these scenarios in Figure 3.1(G) and Figure 3.1(I) which are the corresponding joint
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probability tables for Figure 3.1(A) and Figure 3.1(C). For illustration purposes, the 256 color

intensity values are binned into 4 color intensities.

Mutual Information

MI is calculated from the entropy of each image and the joint entropy of the two images using
Equation (3.3).

MI(r,g) = H(r) +H(g) —H(r,8) (3.3)

Intuitively, this formula calculates MI by subtracting the joint entropy of r and g from the total
entropy in both r and g, which leaves the overlap in entropy of r and g.

In Figure 3.1, we illustrate how MI is calculated from a set of 3 simulated images. The first
case (Figure 3.1(A)) shows simulated red and green cells placed uniformly in random locations.
In most cases, red and green do not overlap as shown in Figure 3.1(D) (although by random
chance, there is little co-occurrence of red and green cells that appear yellow). We calculate
MI using Equation (3.3). Because there is little or no co-occurrence of red and green pixels in
Figure 3.1(A), the joint entropy H(r,g) ~ H(r) + H(g), so MI = 0.

The second case, in Figure 3.1(B), shows red cells placed within in a Gaussian distributed
range of the green cells creating partial co-occurrence of red and green pixels. We can observe
this region in Figure 3.1(E) (colored in yellow) which is the MI, calculated by summing
the entropy of red and green images independently, and then subtracting the joint entropy
(Equation (3.2)). The process to calculate the joint entropy of the two images are described in
Section 3.4.5 Joint Entropy.

The third case (Figure 3.1(C)) is a special case where the red and green pixels are of same
intensity residing in the same location. When separated as two images, red and green cells
completely overlap, shown in Figure 3.1(F). In this case, information about the location of
red cells provides all the information about the location of green cells. Because there is total
correspondence between the intensity of red and intensity of green in the same location, the

joint entropy H(r,g) = H(r) = H(g), and the MI therefore equals H(r) (and also equals H(g)).
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3.4.6 Normalized Mutual Information

The MI analysis quantifies in bits the amount information shared by images showing the
locations of two different cell types. However, the number of bits is influenced by the dimension
of images and the numbers and sizes of cells. It does not provide us with a universal scale
with which to compare the association of T cells with other cell types. For this, we define and

calculate NMI as:

_ MI(rg)
M= (), Hg))

3.4)

We normalize MI by the minimum entropy image. MI depends on both the joint entropy and
the internal (marginal) entropies of each color channel. The internal entropies vary across
experiments, resulting in MI values that are not directly comparable. We normalize by dividing
MI by the minimum of the internal entropies, since it provides an upper bound on MI, for a
proof see [87].

The value of NMI is bounded between 0 and 1, where O indicates no occurrence of the red
and green cells in the same location as in Figure 3.1(A), and 1 indicates complete colocalization
of the red and green cells as shown in Figure 3.1(C). NMI allows us to directly compare
spatial association of cells, regardless of the cell types, cell sizes, and image dimensions in our
experiments.

We validated the NMI metric on simulated data generated as 512x512 RGB images shown
in Figure 3.2(A). Each cell is 11x11 pixels (square shaped) with randomly chosen color
intensities ranging from O to 255. In each image, 500 green cells are placed uniformly at
random along with a number of red cells uniformly distributed between 100 and 500. We placed
each red cell within a distance determined by a Gaussian distribution from each green cell with
standard deviations (o) ranging from O (generating complete correlation of the red and green
pixels) to 10 (generating a low probability of overlap of red and green pixels). We treat the
image as a torus to avoid edge effects when placing red cells. We also analyzed images in which

both green and red cells are placed uniformly at random (%), and therefore with no spatial
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association and minimum MI.

NMI is designed to normalize for variations in cell numbers and differences in fluorescence
between fields. Normalization makes the method more robust to cell count. To assess the
potential effect of cell numbers on NMI, we simulated images in which we varied the cell
numbers from 100-500 and calculated NMI for differing cell numbers with complete cell
overlap (o = 0, increasingly spatially separated o = 1 or ¢ = 3 or cells placed in uniformly
random distribution) Figure 3.3. We also calculated PCC as a comparison. We find that NMI
is less sensitive to variations in cell numbers than PCC, particularly in cases in which there is

already spatial association.
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Figure 3.2: Validation of MI and NMI. Panel A shows 3 samples of simulated 512 x 512 images
that consist of 500 green cells and a number of red cells uniformly distributed between 100
and 500. Each pixel intensity of the red and green cells is randomly assigned and each cell is
11 x 11 pixels (square shaped). The red cell locations are chosen from a Gaussian distribution
centered at the location of green cells with standard deviation (0) 0 and 5 in the first and second
images, and uniformly random in the third image. (B) and (C) consist of multiple boxplots
of MI (B) in bits and NMI (C) values for simulated images where the standard deviation (0)
ranges from 0 to 10 and 2 additional special cases: 0* and 7. 0* indicates that red and green
color intensities are identical in corresponding locations which maximizes both MI and NMI.
% indicates that the cells are placed uniformly at random within the image and with uniform
random color intensity, resulting in the lowest MI and NMI. Increasing o decreases the spatial
association of cells and both MI and NMI systematically decrease, demonstrating that they are
useful metrics that indicate spatial association between cells.
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Figure 3.3: NMI is more robust than PCC to cell count. Simulated images were generated in
which numbers of cells in the green and red channels are varied by number and positions varied
as indicated. Apparent association of cell types based purely on the increased chance of two
cells being near one another as the number of cells goes up is a concern. The normalization
factor in NMI is intended to compensate for this artifact. Insensitivity to variation in cell number
while preserving sensitivity to the underlying association between cell types distinguishes NMI
from PCC. The number of cells in the green channel is kept constant at 500 while the number
of cells in the red channel is varied. NMI results are shown in the left column and PCC in the
right column. The spatial association between cell types in the model decreases from ¢ =0 in
the top row to uniform random placement in the bottom row.

3.4.7 Regionalization of Images

The NMI method takes into account the intensity and localization of pixels. However, cell
sizes consist of multiple pixels. A naive T cell has a diameter of approximately 5 um-7 um
whereas the approximate length of a pixel is 1 um. Therefore, we created regions in the image
and call this process “regionalization”. In regionalization, we chose a pixel (p) and calculated a
region around it with given length, for example in a 5x5 pixel (6 um x 6 um ) region, p is the
middle pixel. We calculated the average intensity of the corresponding region and replaced the
value of p with the average intensity value. Then we iterated over all pixels. We discarded the
regions along the image boundaries where complete regions could not be formed. This method
produced new images where each pixel has the average intensity of its region. We calculated
the MI, NMI, and PCC of these regionalized images. We used region sizes: 5x5 pixels (6 um X
6 um), 1515 pixels (18 pm x 18 um), 25x25 pixels (30 um x 30 um). We are most interested
in the results of region sizes between 5x5 (6 um X 6 um) and 15x 15 pixels (18 um x 18 um),
since these scales are most relevant to our biological data.

We validated both NMI and PCC for regionalized images. For validation, we used 512 x
512 simulated images that are constructed using the same method mentioned in Section 3.4.6
Normalized Mutual Information. Analysis is performed on 500 green cells and 500 red cells.
These simulated images are then divided into regions using the regionalization method. The

size of the regions are consistent with the ones we used for experimental data. Results from
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NMI and PCC analysis on these images are shown in Figure 3.4. NMI and PCC decrease with
decreasing spatial association, following a trend similar to that in the validation analysis shown

in Figure 3.2, although region size influences PCC more than NMI.
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Figure 3.4: Regionalized PCC and NMI on simulated data. Simulated images are 512x512
pixels with 500 red and 500 green 11 x 11 pixel square shaped cells. The red cell locations
are chosen from a Gaussian distribution centered at the location of green cells with standard
deviation (o), which ranges from 0 to 10 and % . % indicates that the cells are placed uniformly
at random within the images and with uniform random color intensity. (A) NMI of simulated
images with regions of 6 um x 6 um (blue), 18 um x 18 um (green), 30 um x 30 um (red), and
single pixel (1 um x 1 pm, cyan). (B) PCC of simulated images using the same regions.

3.5 Results

3.5.1 PCC shows T cells associate more with FRCs than DCs in LN

To ask whether naive T cells associate with DCs in the LN, we used PCC, a standard colocal-
ization measure. As a comparison, we also calculated the PCC of T cells and FRCs because it
has been suggested that T cells use FRCs as a network for migration through the LN [13]. We
transferred CMTMR-labeled T cells into CD11c-YFP mice, harvested LNs for 2PM imaging,
and calculated PCC of T cells and DCs from multiple images of T cells and DCs. We imaged
FRC:s as previously described by [13] by irradiating Ubiquitin-GFP animals, reconstituting with
whole bone marrow from non-GFP animals for 4-8 weeks, and co-imaged GFP+ FRCs with
co-transferred CMTMR labeled T cells. We find the PCC of T:DC microscopy images was
low (Figure 3.5(A)) (median = 0.19, results given to two significant figures throughout). In
fact, the PCC of T cells to DCs was significantly lower than PCC of T cell with FRCs (T:FRC
PCC median = 0.38). In Figure 3.5, we use interquartile-range notched box plots to visualize
the statistical relationships between measurements [ 28]. Non-overlapping notches indicate
the measurements were drawn from different distributions at the 95% confidence level. While
previous studies have determined association of T cells with FRCs and DC subsets separately,
we quantitatively compare the effect of FRCs relative to DCs on T cell positioning. These
results suggest that FRCs show much higher correlation with naive T cell locations in the T cell

zone of LNs than the presumed intended targets of DCs.
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Figure 3.5: Notched boxplots displaying PCC (A) and NMI (B) values for T:DC, T:FRC, and
T:BV images. Data include 6 T:DC image z stacks (2 experiments on 2 different days, 2 mice, 4
lymph nodes), 12 T:FRC image z stacks (3 experiments on 3 different days, 6 lymph nodes), 4
T:BV image z stacks (2 mice on 2 different days, 3 lymph nodes). Black dots indicate the mean.
Median T:DC PCC value = 0.1922, median T:FRC PCC value = 0.3810, median T:BV PCC
value = 0.2447. Mann Whitney p values for T:DC-T:FRC < e-4, T:DC-T:BV = 0.0293, and
T:FRC-T:BV < e-4. Median T:DC NMI value = 0.0101, median T:FRC NMI value = 0.0798,
median T:BV NMI value = 0.1355. Mann Whitney p values for T:DC-T:FRC, T:DC-T:BYV, and
T:FRC-T:BV comparisons < e-4.
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3.5.2 Application and validation of NMI as a novel method to assess T

cell association with cell types in LN

While PCC provides a quantitative metric to assess the correlation among pixels in images,
PCC assumes that these correlations are linear [3,61, 77, ]. We use NMI (a normalized
version of MI) to quantitatively assess spatial relationships between cell types without assuming
linearity. The principles of MI are illustrated using simulated images in Figure 3.1. MI has
been previously used to understand co-registration of MRI images, but not previously applied
to fluorescent images.

We calculated the entropy of fluorescence signals using Equation (3.1) and then calculated
the joint entropy using Equation (3.2)(for detail see Methods). We then calculated the MI
of the signals using Equation (3.3). To validate our MI calculations, we created simulated
images with fields of green and red “cells” in which there is no association (Figure 3.1(A)),
partial association (Figure 3.1(B)), and complete association (Figure 3.1(C)) of fluorescent
objects with sizes similar to that of cells. The 3 cases can be simplified by observing the
images in Figure 3.1(D) (no association) , Figure 3.1(E) (partial association marked as yellow
area) and Figure 3.1(F) (complete association marked as yellow area). The joint probability
tables (simplified examples in 4 x 4 color intensities shown in Figure 3.1(G), Figure 3.1(H),
Figure 3.1(I)) are used to calculate the joint entropy. If there is no spatial association, the
joint probability table shows evenly distributed low values (Figure 3.1(G)). Given the partial
spatial association of cells, the joint probability table shows increased values across the diagonal
(Figure 3.1(H)). Given completely overlapping signals, the joint probability table shows high
values across the diagonal (Figure 3.1(I)). Because MI is calculated from fluorescent images
in which different images possess different internal entropies, we normalized the MI values to
provide a universal scale (between 0 and 1) with which to compare one image to another. We
calculated NMI by normalizing MI with the minimum entropy of the two images, thus enabling

quantitative comparisons across fields.
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In Figure 3.2(A), we show examples of simulated images created for validating NMI
(described in Section 3.4.6 Normalized Mutual Information) in which red cells were placed with
standard deviation (o) of 0 and 5 as well as red cells placed uniformly at random. We expect the
MI and NMI values to decrease as the standard deviation increases, as shown in Figures 3.2(B)
(MI) and 3.2(C) (NMI). As expected, MI and NMI are maximum in the special case 0* where
the intensity, size and location of the cells are all identical; MI and NMI decrease as the spatial
association between the cells decreases. While the MI can be greater than 1 bit (Figure 3.2(B)),
the NMI metric is normalized to be between 0 and 1 (Figure 3.2(C)), demonstrating that NMI
can provide comparisons to account for differing levels of fluorescence across multiple fields
on a common scale.

As a further validation, we tested whether NMI calculations on our experimental data range
between 0 and 1. Figure 3.6 shows that the NMI of an image with itself is 1 (Matched Red:Red
and Matched Green:Green). We calculated NMI of two unrelated images from two different
experimental fields (Unmatched Red:Green). For example, the red cell image may be taken
from a T:DC experiment and the green cell image from a T:FRC experiment. As expected,
NMI in these cases is very close to O (Figure 3.6). We then calculated the NMI of T:DC and
T:FRC interactions using the same images on which we calculated PCC (Figure 3.5(B)). We
find that similar to PCC analyses, NMI shows significantly higher association for T:FRC than

T:DC (T:FRC NMI median = 0.08; T:DC NMI median = 0.01).

3.5.3 Regional PCC and NMI analyses

We first calculated both PCC and NMI using pixel-based comparisons (Figure 3.5). We find that
PCC and NMI show a significantly higher association of T cells with FRCs than DCs. However,
NMI and PCC pixel based metrics can be problematic. Intercellular interactions in 2PM
images are challenging to quantify by existing colocalization analyses because individual cells
occupy discrete physical space, but pixel-based colocalization methods measure the amount

of fluorescence signal overlap in individual pixels. In fact, any actual overlap in cell signal
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Figure 3.6: Illustration of the highest and lowest NMI that can be generated from the experi-
mental data. The NMI of an image with itself is the maximum value of 1, shown for an example
image of red cells and an example image of green cells. To obtain a minimum value, we
calculate NMI between two images, one red and one green from two different fields so that the
images are unrelated. We calculated NMI from 5,036 pairs of frames (Unmatched Red:Green).
For this unmatched scenario, the NMI is very close to 0 (median is 0.008).

as measured by PCC and NMI is likely artefactual in that cells do not physically overlap in
space. Also, it is possible that true intercellular contacts would be underestimated due to image
resolution and the inability to resolve smaller protrusions such as dendrites of DCs. To account
for cell-cell association rather than actual signal overlap based on pixels, we regionalized our
images using sliding windows of multiple pixels, the size of which matched approximate sizes
of T cells, DCs, and FRCs (estimated 5-7 um diameter). The regionalized image has the same
number of pixels as the original, but each pixel contains information drawn from the region

surrounding it. Given that each pixel is approximately 1 um in length, we created regions of 5x5
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pixels (6 um x 6 um) and 15x15 pixels (18 pm x 18 um) to account for potential extensions
beyond the cell bodies. We also extended the analysis to larger region sizes. Fluorescence in
regions was determined by taking the average fluorescence of all the pixels within the region
(for detail see Section 3.4.7 Regionalization of Images). We used this method to generate
new regionalized images and performed both PCC and NMI to take into account potential
interactions of cells without directly overlapping fluorescent signals.

We first tested the “regionalization” effect by performing PCC and NMI on simulated
images (as shown in Figures 3.1 (A), (B), and (C) and 3.2(A)) to determine the effect of cell
density, degree of pixel overlap, and regionalization on co-association (Figure 3.4). We created
simulated images that approximate the amount of fluorescence in our experimental images. We
varied the distance between the simulated cells to model different amounts of spatial association.
We applied our regionalization method to these simulated images and calculated NMI and PCC
values. We found that larger regions produce higher NMI and PCC values. Compared to NMI,
PCC is less sensitive to changes in spatial association but more sensitive to region size (compare
Figure 3.4(A) and 3.4(B)). Despite these differences, both NMI and PCC provide a quantitative

measure that can be used to detect variation in spatial association among cell types.
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Figure 3.7: (A) Sample images of T:DC (T cells labeled in red and DCs labeled in green), T:FRC
(T cells labeled in red and FRCs labeled in green), and T:BV (T cells labeled in green and blood
vessels labeled in red). (B, C) Line plots representing the NMI (B) and PCC (C) of T cells and
DCs (T:DC, green line), T cells and FRCs (T:FRC, blue dashed line), and T cells and blood
vessels (T:BV, black dotted line). NMI and PCC were calculated on pixels (Region Length
= 1 um), or regionalized images of increasing side length (6 um, 18 um and 30 um). Red stars
indicate medians for the corresponding region size, and error bars indicate the 95% confidence
interval around the median [9]. For NMI, Mann Whitney p values for T:DC-T:FRC, T:DC-T:BYV,
and T:FRC-T:BV comparisons < e-4 for all region lengths except T:DC-T:BV (region length
= 18 um) p value = 0.0012. For PCC, Mann Whitney p values for T:DC-T:FRC, T:DC-T:BV,
and T:FRC-T:BV comparisons < e-4 for all region lengths except T:DC-T:BV (region length =
1 um) p value = 0.0293. (D, E) Notched box plots comparing the NMI (D) and PCC (E) of T
cells and DCs with T cells and FRCs at physiologically relevant region lengths of (6 um, 18 um
and 30 um) for T:DC associations and 6 um for T:FRC associations. Note different scales on
the y-axis. Both NMI and PCC are greater for the physiologically relevant region sizes for
T:FRC than for T:DC (comparing T:DC at 30 ym to T:FRC at 6 ym p = 0.0022; for all other
comparisons p < e —4). T:DC images were from 6 image z stacks consisting of 4089 frames
from 2 mice and 4 lymph nodes. T:FRC images were from 12 image z stacks consisting of 9,468
frames from 3 mice and 6 lymph nodes. T:BV images were from 4 image z stacks consisting of
4,361 frames from 2 mice and 3 lymph nodes.

3.5.4 Regional analyses confirm that T cells are more associated with

FRCs than with DCs

After validating both the NMI metric and the regionalization of images, we analyzed regional-
ized images to quantify spatial association of T cells with DCs and FRCs using both PCC and
NMI. Both PCC and NMI show that T cells associate less with DCs than FRCs (Figure 3.7(B)
for NMI and Figure 3.7(C) for PCC). T cells are more associated with FRC across all region
sizes. In pixel-based comparisons (without regionalizing), the T:DC association was very low
(Table 3.1, (Figure 3.7,NMI = 0.0101; PCC = 0.1916) while T:FRC association was signifi-
cantly higher (NMI = 0.0798; PCC = 0.3810). Both NMI and PCC values for T:DC interactions
increased with increasing region sizes, T:FRC association also increased at each region size.
Regionalizing PCC into 18 um x 18 pm region (15x 15 pixels) resulted in the same trend among
the compared cell types as NMI (Figure 3.7(B) NMI; T:DC median = 0.1427, T:FRC median
= 0.3426; (Figure 3.7(C) PCC T:DC median = 0.4396, T:FRC median = 0.7646, Table 3.1).
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Data Type Median NMI | 95% Confidence Interval | Median PCC | 95% Confidence Interval
Random Control 0.0008 [0.0007, 0.0008] 0.0008 [0.0005, 0.0010]
Same Image control 1 [1,1] 1 [1,1]
1 ym x 1um (Single Pixel)
T:DC (WT) 0.0101 [0.0090, 0.0102] 0.1916 [0.1879, 0.1941]
T:DC (CCR77) 0.0158 [0.0156, 0.0161] 0.1527 [0.1338, 0.1589]
T:FRC 0.0798 [0.0691, 0.0846] 0.3810 [0.3729, 0.3886]
T:BV 0.1355 [0.1348, 0.1381] 0.2447 [0.2281, 0.2610]
6um x 6 um
T:DC (WT) 0.0588 [0.0524, 0.0685] 0.3467 [0.3427, 0.3808]
T:DC (CCR77") 0.0857 [0.0808, 0.0886] 0.4252 [0.3720, 0.4334]
T:FRC 0.2377 [0.2207, 0.2427] 0.6175 [0.5392, 0.6283]
T:BV 0.1144 [0.1101, 0.1214] 0.2565 [0.2342, 0.2815]
18 um X 18 um
T:DC (WT) 0.1427 [0.1418, 0.1443] 0.4396 [0.4327, 0.4734]
T:DC (CCR77) 0.2633 [0.2576, 0.2679] 0.5866 [0.5794, 0.5957]
T:FRC 0.3426 [0.3384, 0.3487] 0.7646 [0.6893, 0.7913]
T:BV 0.1036 [0.1002, 0.1093] 0.2603 [0.2302,0.2805]
30um x 30 um
T:DC (WT) 0.1547 [0.1509, 0.1589] 0.5089 [0.5020, 0.5448]
T:DC (CCR77") 0.3075 [0.2980, 0.3165] 0.6590 [0.6527, 0.6673]
T:FRC 0.3685 [0.3525, 0.3789] 0.8169 [0.7659, 0.8352]
T:BV 0.1080 [0.1034, 0.1159] 0.2816 [0.2514,0.2984]

Table 3.1: Median NMI and PCC values among cell types with 95% confidence interval. Both
NMI and PCC values increase with region size except for T:BV.

Figure 3.7(D) and (E) compare physiologically relevant regions that approximate cell sizes and
account for potential dendritic extensions with larger regions for DCs at 18 um and 30 um than
FRCs at 6 ym. Again, T:FRC associations are greater than T:DC associations using both NMI
and PCC. Thus, across region sizes, both NMI and PCC analyses show significantly higher T
cell association with FRCs compared with DCs. These results suggest that despite the fact that
DCs are considered the ultimate targets for T cell search, FRCs a greater determinant of naive
T cell positioning within the LN.

In addition to FRCs and DC:s, structures such as blood vessels in the LN can be sources of
chemokines [88, 179], and T cells may move along vessels in other tissues [ 1 38]. Several studies
suggest DCs are biased to localize near blood vessels and efficiently activate antigen-specific
T cells [14, ]. We used NMI and PCC to ask whether vasculature can determine T cell
localization in LN. We transferred GFP+ T cells for 16 hours as previously described, then just
prior to imaging, we injected animals with DyLight 594-lectin which binds endothelial cells

lining blood vessels. We then imaged T cells in conjunction with vasculature in LNs. With the
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pixel based PCC (Figure 3.5(A)) and NMI analyses (Figure 3.5(B)), T cell association with
blood vessel appears higher than T cell association with DCs, and NMI shows higher T cell
association with blood vessels than even FRCs. However, with increasing region size, PCC and
NMI analyses of T:BV values stayed consistent while T:DC values increased, for example, in
the 18 um length region, NMI of T:DC was 0.1427 and T:BV was 0.1036. The same trend was
seen for PCC (T:DC = 0.4396, T:BV = 0.2603). The consistent value of NMI and PCC analyses
of T:BV across regions likely reflects the sharp resolution of the blood vessel fluorescence
compared with the more blurred extensions of FRCs and DCs. With increasing region size
matching cellular scales, T cells show lower association with BVs (Figure 3.7 (B) and (C)).
These results suggest that T cells likely do not use crawling along vessels as a means to migrate

within T cell zones of LNGs.
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Figure 3.8: (A) Sample images of WT T:DC and CCR7”~ T:DC. T cells are labeled in red
and DCs are labeled in green. In WT T:DC, T cells are wildtype naive T cells and in CCR77
T:DC, T cells are from CCR7-deficient animals. (B,C) Line plots representing the NMI (B)
and PCC (C) of WT T cells and DCs (T(WT):DC, green line) and CCR7”" T cells and DCs
(T(CCR77-):DC, blue dashed line). NMI and PCC were calculated on pixels (Region Length
= 1 um), or regionalized images of increasing side length (6 um, 18 um and 30 um). Red
stars indicate medians for the corresponding region size, and error bars indicate the 95%
confidence interval around the median [9]. For NMI, Mann Whitney p values for T(WT):DC-
T(CCR77):DC comparisons < e-4 for all region lengths. For PCC Mann Whitney p values
for T(WT):DC-T(CCR77):DC comparisons for region lengths 1.2, 6, 18, and 30 um: Region
length 1uym p < e-4, 6um p = 0.9152, 18 um p = 0.0021, 30um p < e-4. WT T:DC images
were from 6 image z stacks consisting of 4089 frames using 2 mice and 4 lymph nodes. CCR7"
data are from 12 image z stacks consisting of 11,294 frames using 4 mice and 8 lymph nodes.

3.5.5 CCRY7 does not enhance T:DC association

The chemokine CCL21 plays an important role in driving rapid motility of naive T cells in
LNs, and this rapid motility has been suggested to enhance T cell interactions with DCs [209].
We tested whether signaling through CCR7 might provide information to T cells to enable
closer T:DC associations. To do this, we transferred CMTMR-labeled CCR77" T cells into
CD11c-YFP mice, harvested LNs for 2PM imaging, and calculated NMI and PCC of CCR7""
T cells and DCs. Contrary to our hypothesis, we found that in general, CCR7”~ T cells and
DCs showed slightly higher NMI and PCC than WT T:DCs (Figure 3.8(B), NMI WT: 0.0101;
CCR77: 0.0158 and Table 3.1). WT T cells showed higher co-association with DCs compared
with CCR77 T cells in only one case, pixel-based PCC analysis, while with increasing region
size and in all NMI analyses, CCR7”" T cells were slightly increased in DC association over
WT T cells (Figure 3.8(B) and (C), Table 3.1). Based on both NMI and PCC analyses, these
data show that CCR7 does not promote increased T cell localization with DCs. Absence of
CCR7 did not increase T:DC association to the level of T:FRCs, as NMI and PCC values of
T:FRC remained significantly higher than CCR7”~ T:DC association. These results suggest that
high speed motility promoted by CCR7 signaling likely functions to promote T cell exploration

of the LN paracortex rather than increase T cell localization close to DCs.
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3.6 Discussion

In this work, we analyze 2PM movies to quantitatively compare T cell association with different
cell types and structures in the naive lymph node using both PCC and NMI. To account
for the limitations of 2PM to resolve cell structures, we create regions that correspond to
physiologically relevant cell sizes. Both PCC and NMI across multiple region sizes show that T
cells share more spatial association with FRCs than with DCs. Furthermore, CCR77 T cells do
not associate less with DCs than WT T cells; in fact, our results suggest that CCR77 T cells
may associate slightly more with DCs than WT T cells.

Many studies have investigated T cell search for DCs in the naive LN since DCs are the
key cell type that is required to present cognate antigen to T cells leading to the initiation of
the adaptive immune response [106,209]. [206] suggest that cell positioning within the LN
maximizes the likelihood of T cell interaction with DCs. Other studies hypothesize that DCs
are situated atop the FRC network to facilitate T cell interactions with DCs as the T cells
move along the FRCs [83] and that T cells enter the paracortex from HEVs at specific entry
points contiguous with the FRC network, enabling T cells to be “received” by a greeting line
of DCs positioned on top of the FRCs near the HEV entry points [117]. Further, different
subpopulations of DCs have been shown to localize to specific regions in the LN, suggesting that
DC positioning relative to T cells may facilitate T cell activation [84]. However, our quantitative
analysis using NMI and PCC suggest that T cell association with FRCs does not lead to similarly
high association with DCs. The lack of association between T cells and DCs suggests that T
cells have no a priori knowledge of DC positions and that DCs are unlikely to attract T cells to
DC locations prior to infection. While there is evidence that upon DC activation and infection,
chemokines are important to mediate T cell repositioning to DCs [39,89, 1 15], our data suggests
that chemokines CCL19/21 that bind to CCR7 do not play a role in T cell positioning to DCs
in the absence of infection. [80] previously demonstrated that T cells move with a lognormal

correlated random walk, which aligns with several other studies in the LN [17, ]. Our results
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suggest that random movement, rather than guided movement, may be the strategy that naive T
cells use to interact with DCs.

Although T cells and DCs have low NMI and PCC, we find that unexpectedly, lack of
CCR7 does not decrease association between T cells and DCs, in fact, CCR7-deficient T
cells show slightly increased association with DCs. CCR7 mediates high speed motility in
LNs [100]. One possible explanation for our finding is that CCR7 deficiency in T cells results
in slower T cells that cannot efficiently move away from DCs once they have made contact.
Alternatively, CCR7 signaling might be important for T cells to move along FRCs where they
receive chemokinetic and survival signals, including both CCL21 and other cytokines such as
IL-7 so that in the absence of CCR7, T cells stay closer to DCs, which are not the primary
source of CCL21 [101, ]. While it is known that CCR7-deficient T cells are less capable of
activation, our quantitative analysis suggests that this may not be due to lack of T:DC contacts
but rather may be due to CCR?7 effects on overall motility or effects on cosignaling with T cell
receptors.

We validated both NMI and PCC on simulated data where we directly manipulated the spatial
association of cells and showed that both metrics decrease as spatial association decreases and as
region size increases (Figure 3.4). We designed NMI to normalize for differences in fluorescence
between fields, and NMI can quantify non-linear relationships between variables [177] while
PCC is based on correlation coefficients [3,61]. Additionally, information based measures are
theoretically insensitive to coarse graining [54]. Our regional NMI analyses in both simulated
and experimental images is consistent with this theoretical prediction in that NMI is less
sensitive to region size than PCC (Figure 3.4 and 3.7). We find that NMI is also less sensitive
to variations in cell number than PCC, particularly in cases in which there is already spatial
association (Figure S2). Further, NMI based on regions avoids problems associated with pixel-
distance measures that arise from 2PM images containing transient single pixel noise [149].
Cell-distance measures are also problematic because they require the boundaries of cells, or

their centroids, to be well defined. That is usually not the case in 2PM images, especially in
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the case of DCs and FRCs. We find there are advantages to our approach over regional mutual
information (RMI) [164], in particular RMI fails for region sizes greater than 6 um in length.
For scales where RMI can be applied the results are in line with PCC and NMI.

While both NMI and PCC consistently show that T cells are more spatially associated with
FRCs than with DCs, we note several caveats in interpreting these results. We considered that T
cells may share the highest NMI or PCC with the most numerous cells or structures that occupy
the most volume in the paracortex, simply because they cannot move away from the abundant
cell type or structure without encountering another cell or structure of the same kind. However,
our simulations (Figure 3.2(C)) validated that NMI is insensitive to variation in cell number,
with 5-fold variation in cell number causing much less effect on NMI than changes in spatial
association. While the amount of background noise (low-level fluorescence of individual pixels)
has some effect on NMI and PCC, that effect does not change the conclusion that NMI and
PCC both indicate higher spatial association of T cells with FRC than with DC.

Similar to previous studies, our experimental method uses irradiation to image FRCs
showing residual GFP+ hematopoeitic cells (between 5-10%). Thus, it is possible that T:DC
can contribute to the T:FRC NMI and PCC. However, because NMI and PCC of T cells with
DC:s is significantly lower, it is unlikely that the increase in T cell association seen with FRCs
is due to residual DC signal. There may also be limitations in the use of two photon imaging
as the primary mode of visualizing T cell interactions in the T cell zone as the T cell zone
is usually deeper in the LN cortex. Thus, although many publications have used two photon
imaging to understand T cell motion in LNs, T cell associations with FRCs and DCs may vary
depending on the specific areas that are imaged. Additionally, it is possible that staining specific
subsets of T cells or DCs may reveal more or less spatial association than we see with total T
cells and all CD11c+ cells.

In summary, our results show that NMI and PCC both provide quantitative methods to
analyze the relationship between two sets of objects, validated in simulations. NMI and PCC

show significant differences for different cell populations labeled with two different fluorescent
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markers, providing quantitative comparisons of fluorescent microscopy images across multiple
fields [180]. Thus, both NMI and PCC of physiologically relevant regions are useful tools
to quantify the relationship between fluorescent cell types. Since MI is a general method for
measuring colocalization of fluorescence microscopy images including 2PM signals, the NMI
and regional analyses may be broadly applied to any colocalization study of differentially

fluorescent objects in the LN and more generally.
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4.2 Abstract

Modern scientific simulations produce very large datasets, making interactive exploration of
such data computationally prohibitive. An increasingly common data reduction technique is
to store visualizations and other data extracts in a database. The Cinema project is one such
approach, storing visualizations in an image database for post hoc exploration and interactive
image-based analysis. This work focuses on developing efficient algorithms that can quantify
various types of multivariate dependencies existing within multi-variable datasets. It applies
specific mutual information measures for the quantification of salient regions from multivariate
image data. Using such information measures, the opacity of the images is modulated so that
the salient regions are automatically highlighted and the domain scientists can interactively

explore the most relevant regions for scientific discovery.

4.3 Introduction

Image-based data reduction techniques have emerged as one of the viable solutions to minimize
the size of the stored data so that it can be analyzed and visualized interactively post hoc by
the application scientists [ | 14]. Storing large-scale three-dimensional multivariate simulation
datasets in the form of an indexed image database, called a Cinema Database! [5], facilitates
exploration of the large-scale scientific data efficiently without overwhelming the users. These
Cinema databases are ideally generated in situ, i.e., when the simulation is running on the

supercomputer and the data is not yet moved to the disks. Instead of keeping the raw data,

Uhttps://cinemascience.github.io
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Cinema databases are stored onto disk as a proxy for the data, capturing various types of
visualizations of the data. Later during offline analysis, the Cinema databases can be explored
interactively to analyze the data in the image space. The success of this approach has been
shown in many application domains [5, 16].

Even though Cinema databases result in a significant amount of data reduction, such
databases still consist of multiple variables, timesteps, visualization parameters, etc. Hence,
efficient image-based data analysis and visualization algorithms are necessary to find salient data
features automatically so that the domain experts do not have to manually explore them. This
problem becomes more challenging when the experts want to analyze features in the multivariate
spatiotemporal domain to study their interaction pattern. In many scientific applications,
variables collectively show association/dissociation relationships and such properties are often
correlated to a physical phenomenon in the data. For example, in hurricane simulation data,
low-pressure and low-velocity regions are characterized as the hurricane eye, indicating the
strength of the storm. Therefore, multivariate analysis techniques are essential to efficiently
detect association/dissociation relationships in image databases. Ideally, these relationships
should be visually incorporated to the image database to support further interactive exploration
for new scientific discovery.

In this work, we propose an information-theoretic analysis framework that works on multi-
variate time-varying Cinema databases and performs automatic identification of salient regions
given a pair of variables. The technique uses specific mutual information measures (SMI) that
are a decomposition of traditional mutual information so that the information content of specific
data values can be quantified. Each SMI measure captures a unique multivariate property of
the data. Using the strength of these SMI measures, the opacity of the images is modulated
during visual analysis so that the important spatial regions are highlighted automatically and the
users can quickly focus on them while exploring the Cinema databases. The analysis results are

presented interactively using a web-based visual-analytics tool, CinemaView?, which allows

Zhttps://github.com/cinemascience/cinema_view
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Figure 4.1: An illustrative diagram of our workflow. Here we have chosen the variables pressure
and velocity from the Hurricane Isabel dataset to demonstrate the steps in our technique.
Specific mutual information (SMI) measures: Surprise and Predictability are applied on the
variable pairs and corresponding images are shown in column (a). After modulating the opacity
using linear and nonlinear mapping functions, images with salient regions are analyzed as
shown in columns (b) and (c) respectively.

side-by-side interactive comparison of analysis results. The efficacy of the proposed framework
is demonstrated by applying it to scientific simulation datasets from weather and combustion
sciences.

The contributions of our work are twofold:

* We propose a new technique to perform automatic feature analysis in multivariate time-
varying scientific data. Our image-based representations of the 3D spatiotemporal data

help reduce the overhead of the analysis significantly.

* We propose an information-theoretic opacity mapping technique to highlight the statisti-

cally salient regions in the data considering pairs of variables.
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4.4 Related Works

In this section, we present a comparative discussion of the existing related works and indicate
how our work is different. Information theory [49] have been used successfully for solving
problems across many computational domains [40, 1 83]. Instead of using traditional mutual
information, the use of various decomposition of mutual information, called specific mutual
information (SMI), have gained significant attraction in recent years. By applying SMI, Bramon
et al. showed that multi-modal 3D medical datasets can be fused into a single dataset [26].
In another work, Bramon et al. used mutual information to design color transfer function for
medical data [25]. To analyze uncertainty of isosurfaces in scientific 3D data, Biswas et al. [22]
used SMI and Dutta et al. extended this work into time-varying domain [67]. In contrast to
the above works, in this work, we have focused on 2D image-based databases, generated from
multivariate time-varying simulations, where our primary focus is to use SMI to automatically
first detect the statistically salient regions considering images from variable pairs and then use
the SMI values at each pixel location to define opacity values so that the salient regions are
automatically highlighted. These images will be ideally generated during the simulation run,
i.e., in situ, and as these simulations can have many variables and hundreds to thousands of time
steps, we believe that our approach can significantly accelerate the multivariate analysis for
the domain scientists by providing them an image-based time-varying summary of simulation

variable interactions where the salient regions are automatically highlighted.

4.5 Proposed Methods

4.5.1 Overview

Our aim is to develop an interactive analysis technique to enable scientists to explore salient
regions in time-varying multivariate datasets. The images in the Cinema database are derived

from three-dimensional simulation data for each variable over multiple timesteps. To study the
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Figure 4.2: Visualization of float and colored images. 4.2(a) presents float image and the
corresponding colored image using the colorbar shown on right for the pressure variable from
the Hurricane Isabel dataset. 4.2(b) presents an example of the mixture fraction variable from
the Turbulent combustion dataset.

relationship among multiple variables, we use specific mutual information (SMI) to provide
information about a target variable based on the knowledge of a specific scalar value of another
reference variable. We employ two SMI measures to explore multivariate interaction between
variable pairs and use the SMI values to design opacity mapping for the images to highlight
statistically salient regions automatically. A workflow of the proposed framework is presented

in Figure 4.1.

4.5.2 Information-Driven Framework For Multivariate Feature Explo-

ration

Cinema Database and Image Format

To generate the Cinema database images, 2D slice rendering is applied to the 3D scalar valued
variables. Instead of applying a transfer function via a colormap and storing the RGB valued
images, we use perspective projection on the 2D slice of the 3D data so that each pixel stores
the corresponding value of scalar data [16]. Such images are called float images and are stored
using standard PNG format. This also allows us to compute the SMI measures directly using
the raw data values rather than data distorted by an underlying colormap. A colormap can then

be applied post hoc. In Figure 4.2, we show examples of the float images and corresponding
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color mapped images that are used in this work.

Specific Mutual Information Measures

The key factor in this work is determining the degree of association among the different variables
in order to identify and highlight salient regions. Because scientific data often has nonlinear
dependencies between variables, any correlation analysis technique must handle nonlinear cases.
There are several correlation analysis techniques available for measuring variable relationship.
Mutual Information (MI) is one of the well-known measures to quantify the mutual correlation
between two variables. MI’s ability to capture nonlinear dependency between variables makes it
a better choice than a more typical approach such as Pearson’s correlation. Mutual information
quantifies the total amount of information overlap between two variables, i.e., if we observe
a certain variable, then MI tells us how much uncertainty has been reduced regarding the
information of another variable. Given two random variables X and Y, MI I(X,Y) is formally

defined as:

1,7)= Y Y px,) log PHY)_ “.1)

yeY xeX p(X) p(Y)

where p(x) and p(y) are the probabilities of occurrence of values x for X and y for ¥ respectively
and p(x,y) is the joint probability of occurrence of values x and y together.

MI quantifies the total association or disassociation between two variables and provides a
single value. Since we aim to extract salient regions, we need a measure that can provide us with
information related to individual scalar values. Traditional MI can be further decomposed into
specific mutual information (SMI) measures to quantify individual data values’ contribution
towards such association or disassociation. For specific scalar values x € X, SMI computes
the information content of x when another variable Y is observed. In this case, X is called
the reference variable and Y is called the target variable. Knowledge about the scalar values
in the reference variable can increase knowledge about the target variable. This increase in
information or decrease in uncertainty helps in identifying important regions in the float-image

data. MI can be decomposed in multiple ways to obtain several SMI measures and we focus
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Figure 4.3: Function plots of the opacity mapping for modulating transparency in the images.
Upper row 4.3(a), presents plots from SMI measure surprise (/1) and lower row 4.3(b), presents
plots from SMI measure predictability (/>). Column (i) represents linear mapping and columns
(i1), (ii1) and (iv) represent increasing order of nonlinear mapping. x-axis of the plots shows
the values from the SMI measure and y-axis shows the mapped values from the corresponding
functions.

on two such SMI measures, Surprise and Predictability, [26, 55] for finding different types of

multivariate characteristics between variable pairs.

SMI measure Surprise: /;(x;Y)

The Surprise measure quantifies the change in the information content in the occurrences of the
target variable after observing individual scalar values of the reference variable. This measure
has the potential of providing information which would seem improbable otherwise, hence
the name surprise [26,55]. The regions where data values have higher surprise values can be

informative. For two random variables X and Y, surprise is denoted as /; and presented as:

Li(xY) = Y p(ylx)log px;) 4.2)
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where x € X is the reference variable and y € Y is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the conditional probabilities of values y given values
x. Surprise is always positive as it is the distance between p(y|x) and p(y). A high [;(x;Y)
implies that after observing the reference variable x, some low probability values of y € ¥ have

become more probable. This surprising element is potentially informative for our analysis.

SMI measure Predictability: I(x;Y)

The Predictability measure provides us with the amount of increase/decrease in uncertainty
about the target variable after observing the reference variable [26,55]. This quantification of the
uncertainty change helps to identify statistically significant regions in the images. Predictability

is denoted as I, and can be computed as:

Lx:Y) ==Y p()logp(y)+ Y. p(ylx)logp(ylx) (4.3)
yeyY yey

where x € X is the reference variable and y € Y is the target variable. p(y) is the probabilities of
occurrence of values y for Y and p(y|x) is the conditional probabilities values y given values x.
Based on the amount of information increase and decrease, I can be both positive and negative.
A high positive I>(x;Y) value indicates that the uncertainty of target variable Y has decreased
when value x is observed. On the other hand, a high negative I (x;Y) value indicates that the
uncertainty of target variable Y has actually increased. According to information theory, data
values that are less probable or unpredictable contain more information representing salient
regions in the data with diverse characteristics that are worth deeper exploration. Therefore,
the surprise and predictability measures provide different statistically meaningful results, an

important consideration in the workflow.
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SMI-driven Opacity Mapping Functions

These two SMI measures can now be applied to the image data to identify and highlight
statistically salient regions. Since each pixel in the data has a scalar value, SMI measures
can be estimated at every spatial pixel location. Note that high surprise regions and high /
low predictable regions indicate salient variable relationships. We want to emphasize such
regions where statistically significant multivariate properties exist between the selected variable
pair. One of the ways to highlight the regions is by modulating the opacity channel of the
image. This suppresses unimportant pixel values while directing focus to important regions.
In the following, we show how different types of opacity mapping functions for SMI values
can be used to automatically highlight important regions in the images. The design goal of
such opacity functions is to make the regions containing high SMI values more opaque so that
they are clearly visible and suppress regions with low SMI values by making them transparent.
The choice of opacity mapping functions is quite broad and we consider linear and nonlinear

mapping functions.

Linear Mapping Strategy of SMI Values

A linear mapping function can be trivially designed. We normalize the values of /; and I, in the

range of [0, 1] using the following linear function.

f(x) = Constant (4.4)

As shown in Figure 4.3, for the surprise measure, /;, 4.3a(i) shows a linear relationship
representing the /; values between [0, 1] for a pair of variables. Since predictability, I, produces
both positive and negative values, we model them separately. We normalize positive values
between [0, 1] and negative values between [—1,0]. Combining both at 0, we get a ’V-shaped’
plot, as shown in Figure 4.3b(i). By designing linear mapping functions such as these, lower

SMI valued or unimportant regions will be transparent and higher SMI valued or informative
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regions will become opaque.

Nonlinear Mapping Strategy of SMI Values

The linear mapping strategy computes opacity value as a linear function of SMI values. However,
this may not provide sufficient differentiation in the opacity to highlight the most salient regions.
In order to design a mapping strategy where the higher SMI valued regions are clearly visible by
further suppressing the low valued regions, we introduce nonlinear mapping functions, where
the transparency value mapping can be modulated exponentially, giving us more control during

analysis. We define the following nonlinear exponential function:
f(x) :el_ac%;a >=1 4.5)

where a is the exponential control parameter. As a increases, higher SMI values are assigned
higher exponential weight. a provide a control parameter that a user can use to set a threshold
on the measures that are improtant for a specific analysis. Figure 4.3, columns(ii), (iii) and
(iv), illustrates how the function changes with increased values of a from 1 to 3. In the case
of I, as a increases, the plot gets steeper by assigning less weight to lower values and more
weight to higher values. For example, in the case of Figure 4.3a(iv), the regions with highest /;
values will be most opaque making anything below threshold transparent, thus highlighting the
significant regions in the images.

This approach is extended for the /> analysis by using the function separately for positive and
negative values. As seen in Figures 4.3b(i1), b(iii) and b(iv), with higher orders of a, the V-shape
from the linear mapping becomes more *U-shaped’ with steepening curves emphasizing the
most significant positive and negative I, values.

With the parameter a, the user can set the opacity threshold for results useful to their specific

analysis and achieve control over the images they want to visualize for further exploration.

65



4.6 Results

The results of our work are presented using an interactive visual analytics tool, CinemaView,
to study salient regions in image datasets. CinemaView is a browser-based viewer that allows
interactive exploration of image databases stored as a Cinema database. Figures 4.4 and
4.5 show the user interface of the CinemaView tool. Figure 4.4(a) shows the color mapped
ground truth images of two selected variables, pressure and cloud, followed by the images
representing the analysis of the variables using surprise (/1) and predictability (1) as opacity
mapping functions. Images containing both linear and nonlinear mapping can be visualized
simultaneously using this tool as shown in Figure 4.4(a). In this study, we present results
by using order up to 3 for the nonlinear opacity mapping functions. The right panel of the
CinemaView interface provides interactive widgets that can be used to adjust image size and
to explore the results over time. There is a drop-down menu where the user can select the
dataset to view. CinemaView is intuitive and user-friendly and it allows interactive exploration
of multiple image databases simultaneously in a side-by-side fashion. Users can easily compare
and contrast the relationships among multiple variables and study their evolution over time

(supplementary video).

4.6.1 Hurricane Isabel Dataset

Hurricane Isabel data was produced by the Weather Research and Forecast (WRF) model,
courtesy of NCAR and the U.S. National Science Foundation (NSF). This dataset consists of
13 variables and 48 timesteps with a spatial resolution of 250 x 250 x 50 for a single timestep.
In this work, we show analysis results obtained using the pressure and cloud variables.

Figure 4.4(a) presents analysis results for timestep 7. The pressure is the reference variable
and the cloud is the target variable. Thus the specific mutual information measures are calculated
for values of pressure. After computing /; measures, the results are stored as images for visual

analysis. Since each pixel in the raw data has a pressure value and each pressure value has an
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Figure 4.4: (a) presents salient regions between pressure and cloud variable analysis from the
Hurricane Isabel dataset at timestep 7 using CinemaView. The first images of each row are
the color mapped images of the reference variable pressure and target variable cloud. The
first row shows the combined analysis using surprise (/1) as the opacity mapping function.
The blue regions represent detected salient areas. The second row shows combined analysis
using predictability (/) for the opacity mapping function. The red regions represent positive
predictability and the blue regions represent negative predictability. The elements annotated
with red arrows and circles show the interactive tools of CinemaView. (b) presents function
plots of the opacity mapping for modulating transparency in the corresponding images. The
upper row shows surprise (/1) plots and lower row shows predictability (/) plots. Column (1)
represents linear mapping and columns (ii), (iii), and (iv) represent increasing order of nonlinear
mapping. x-axis of the plots shows the values from the SMI measure and y-axis shows the
mapped values from the corresponding functions.
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associated surprise (/1) value, we create a new image where each pixel contains the /; value and
the opacity at each location is also controlled by a linear/nonlinear mapping function using the
associated surprise values. This is then repeated for each timestep. The corresponding opacity
mapping functions used to modulate the opacity for timestep 7 are shown in Figure 4.4(b),
where the goal is to highlight regions that have high surprise value. As shown in Figure 4.4(b),
we modulate the order of the opacity function so that we can emphasize regions with high
magnitude of /; values.

In Figure 4.4(a), the high I; valued regions are presented with different shades of blue
where the different shades indicate the opacity modulated regions with darker blue depicting
higher surprise values. From the /; linear mapping results, we can observe that the areas around
the hurricane eye are highlighted as having high /; values and indicate that such regions have
become more probable after the cloud variable is observed. These regions coincide with the
hurricane eyewall — a salient region in the pressure data. It is also observed that, by increasing
the ordering of the nonlinear mapping, we can refine the most significant and surprising regions
around the hurricane eyewall.

The second row of Figure 4.4(a) (except the first image) presents I analysis results. As
the I; values can be both positive and negative, for visualization purposes, those regions are
highlighted using shades of blue and red. Blue and red indicate negative and positive />
values, respectively. From the I; analysis results, we see that the hurricane eye region is red
(positive I) which means it is a highly predictable region when pressure and cloud variables
are analyzed. It is known that in the hurricane eye region, pressure values are typically low
and cloud values are mostly homogeneous and thus such region is detected as a predictable
region. If we focus at the region around the hurricane eye’s boundary, we find that a region
is identified as uncertain and has negative predictability values and so has blue color. This is
also a consistent observation since this region is known as the eyewall and the target/observed
variable cloud has high variability and so is less predictable. Finally, moving away from the

hurricane eyewall, the cloud values again become less varying and such regions are detected as
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more predictable regions (red color) away from the hurricane eye. The white regions in these
images indicate regions where both the positive and negative I, values are relatively low and so
they are transparent. From the predictability plots in Figure 4.4 b(i), b(ii), b(iii) and b(iv), the
white areas represent the parts where the ‘V-shape’ flattens into ‘U-shape’ as we increase the
order of the nonlinear mapping. As the order is increased, stronger predictable and uncertain

regions become highlighted as significant regions.

4.6.2 Turbulent Combustion Dataset

The Turbulent combustion simulation data is made available by Dr. Jacqueline Chen at Sandia
Laboratories through the US Department of Energy’s SciDAC Institute for Ultrascale Visu-
alization. This dataset has 5 scalar variables and 122 timesteps with a spatial resolution of
240 x 360 x 60 for a single timestep. During the combustion process, fuel and oxidizer react
and the flame exists where fuel and oxidizer are in stoichiometric proportions [7]. The mixture
fraction is an important variable in this dataset that indicates the fraction of mass at the fuel
stream origin. So, we have used the mixture fraction (mixfrac) as the reference variable and
hydroxyl radical (Y_OH) as the target variable since both of these can be used to study the flame
regions of the simulation [7]. By analyzing the interacting relationship of these two variables,
important features can be studied and detailed information about the combustion process can be
gleaned.

In Figure 4.5, we show results from timesteps 5, 41, and 80 as three different representative
timesteps, highlighting three stages of the time-varying simulation. Timestep 5 in Figure 4.5(a)
shows the initial state of the combustion variables interacting when the flames just started
burning. Timestep 41 in Figure 4.5(b) represents an intermediate time when the combustion
process is active and and finally, Figure 4.5(c) presents the result from a later timestep 80 when
the flame has expanded. From these three figures, the salient regions clearly change their shape
and position over time, indicating how this method is able to capture temporal changes.

The salient regions detected from the /; analysis signifies the areas where the combustion
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Figure 4.5: Salient regions between reference mixfrac and target Y_OH variable analysis from
Turbulent combustion dataset at (a) timestep 5, (b) timestep 41 and (c) timestep 80. The
first images of each row are the color mapped images of the reference variable mixfrac and
target variable Y_OH. After the color mapped image, the top row from every timestep shows
combined analysis of the variables using surprise (/). The blue regions represent the salient
areas (flames). Similarly, the bottom row shows analysis using predictability (/>). Red and blue
regions represent positive and negative predictability respectively.
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process is happening around the flames. I; analysis shows blue regions identifying the areas
with combustion flames. As we proceed to nonlinear mapping with increased order, higher I
valued regions get highlighted with dark blue and lower /; valued regions become transparent
with lighter shades of blue, displaying the flame regions in a more refined manner.

From the I, analysis results, we see two types of regions, blue and red. As before, the blue
regions show the locations where the values of the target/observed variable (Y_OH) are not
homogeneous when observing the reference variable mixfrac. From all of the three timesteps,
we find that the blue regions coincide well with the regions detected by the /; analysis, i.e.,
the regions where the flame is. In this region, the complex chemical reactions take place and
so is hard to predict. From our I; analysis, such regions are detected as having negative I,
values which means such regions have higher uncertainty, therefore, less predictable. On the
other hand, the red regions in these results show predictable regions of Y_OH when mixfrac is
observed. The two outer red regions (the top and the bottom part) are the background regions
where the combustion is not happening and hence the data values are mostly homogeneous. As
a result, such regions are correctly identified as the highly predictable regions. The red regions
in between two blue uncertain regions indicate that at the center of the simulation, there are
some places where the variable Y_OH is more predictable and hence has positive /5 values. It is
also observed that as we increase the order of our opacity mapping function for both linear and
nonlinear approaches, we can obtain further refined views of these predictable and uncertain
regions where the darker (more opaque) regions indicate locations with higher magnitude of I,
values. From these analysis results, we observe that both /; and 7, analysis on the Turbulent
combustion dataset bring out salient regions that the user can further study in more detail for

exploring important characteristics of these variables over space and time.
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4.7 Conclusions and Future Work

Our work successfully enables scientists to explore and extract salient regions in time-varying
multivariate data sets. This technique is generalizable and is not limited to the data sets analyzed
in this work. In future work, we plan to accelerate the computation of the information measures
by using GPU-based parallel computing. The computation for each timestep can be further
parallelized since the computation at each timestep is independent. We also plan to design more
sophisticated optimization functions for opacity mapping. Instead of generating different orders
for opacity modulation, an optimization-based approach could generate regions that are most

useful to the domain scientists.
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5.2 Abstract

Scientists nowadays use data sets generated from large-scale scientific computational simula-
tions to understand the intricate details of various physical phenomena. These simula- tions
produce large volumes of data at a rapid pace, containing thousands of time steps so that the spa-
tiotemporal dynamics of the modeled phenomenon and its associated features can be captured
with sufficient detail. Storing all the time steps into disks to perform traditional offline analysis
will soon become prohibitive as the gap between the data generation speed and disk I/O speed
continues to increase. In situ analysis, i.e., in- place analysis of data when it is being produced,
has emerged as a solution to this problem. In this work, we present an information-theoretic
approach for in situ reduction of large- scale time-varying data sets via a combination of key
and fused time steps. We show that this approach can greatly minimize the output data storage
footprint while preserving the temporal evolution of data features. A detailed in situ application
study is carried out to demonstrate the in situ viability of our technique for efficiently summa-
rizing thousands of time steps generated from a large-scale real-life computational simulation

code.

5.3 Introduction

With the increase in computing capabilities, large-scale scientific simulations now produce very
large data sets containing thousands of time steps. These computer simulations help scientists

in understanding the intricate nature of various phenomena, e.g., the evolution of hurricanes
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and tornadoes, formation and dynamics of bubbles in a gas-solid mixing process, assessing the
consequences of potential asteroid impacts etc. All of these phenomena are time-varying in
nature and their simulations produce time-varying data sets that can take terabytes (TBs) to
petabytes (PBs) of disk storage. Soon we will have exascale supercomputers [72], enabling
scientists to generate exabytes (EBs) of data. Storing all such data will be prohibitive since
the data generation velocity will outpace the rate at which it can be stored into persistent
disks [44,63]. The bottleneck of slow disk I/O and extreme data volume will entail novel
data triage strategies that can work real-time with the simulation, i.e., in sifu, and produce
informative data summaries, significantly smaller than the raw simulation output, enabling
flexible post hoc analysis.

Currently, to manage the output data size, simulation scientists often skip regular intervals
of time steps and store every n” (n typically varies between 50 ~ 100) time step. By doing
so, the scientists remain oblivious of the events that take place in those skipped time steps.
A better strategy is to detect the key time steps and store only the key time steps so that the
important events can be preserved. In this case, even though the key time steps are stored,
a comprehensive summary of all the time steps will still be missing. Another complicating
factor is that many existing key time step detection techniques for scientific data sets assume
the availability of all the time steps [187, 199]. For an in situ approach, where data becomes
available in a streaming fashion, one time step at a time, such algorithms (a) may not be readily
applicable, (b) could be computationally expensive. In recent years, researchers have focused
on developing in situ techniques that allow identification of important time points during the
simulation [110, 142, 165]. However, such techniques typically do not offer any integrated data
summarization strategy. Therefore, new automatic time-varying data summarization techniques
are needed that will work in sifu and scale with the data generation velocity while producing
informative and comprehensive data summaries with minimal storage footprints.

In this work, we propose a spatiotemporal data summarization technique that uses information-

theoretic measures to quantify data value importance between consecutive time steps and
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summarizes data from a sequence of time steps into a single fused data set. As the simulation
runs for long hours in supercomputers to produce scientifically meaningful data, the proposed
technique analyzes data from thousands of time steps in situ, i.e., when the data is being gen-
erated, identifies key time steps based on an user provided criterion, and summarizes the data
between every two consecutive key time steps into a single summarized data set that captures a
comprehensive view of the features for the time window. Our work can leverage the existing
in situ key time step detection approaches [110, 142, 165] and produce data summaries for the
intermediate time steps. The proposed method stores raw simulation data for each key time
step along with time-varying data summaries for time steps between every two key time steps.
We show that the output data size for our method is significantly smaller compared to the raw
simulation data size and that the summary data can be effectively analyzed and visualized
interactively during post hoc exploration. To show the efficacy of the proposed technique, we
apply our method to several time-varying data sets and conduct a detailed in sifu application
study with a large-scale simulation to demonstrate the in situ applicability and performance of

our technique. Therefore, our contributions to this work are twofold:

* We propose an information-theoretic adaptive spatiotemporal data summarization tech-
nique for large-scale time-varying data sets that produces summary data as a combination
of key and fused time steps to preserve (a) the important events and (b) a comprehensive

view of the whole simulation data.

* We study the effectiveness of the proposed algorithm in situ with a large-scale simulation

and demonstrate its practical applicability and in situ viability.
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5.4 Related Works

5.4.1 In Situ Analysis

With modern supercomputers producing large-scale data sets, in situ analysis has emerged as
a promising solution and several in situ analysis frameworks such as Ascent [ 109], ParaView
Catalyst [75], and Vislt 1ibSIM [207] have been developed. Further, a significant amount
of research has been done to develop data reduction techniques for producing reduced data
summaries that can be stored and used as a proxy for the raw data. Cinema [4] is such an in
situ image-based data reduction and visualization approach. Among other in situ techniques,
compression [ , , ], sub-sampling [2 ], , ], and distribution-based summaries
[63,064,214] are popular. In this work, we advocate a hybrid approach where we store the
raw data for important key time steps and summarize the intermediate time steps to achieve
sufficient data reduction.

Detection of key time points in a data set is an important problem for time-varying data
analysis. Several approaches have been proposed for key time step detection for large time-
varying data sets [187,220]. These techniques generally allow the detection of key time points
and do not offer any data summarization capability. The computer vision community has
developed several techniques for doing spatiotemporal fusion of large data obtained from
different sources. Pulong and Kang proposed a technique for data fusion [124]. Nguyen et
al. [145] developed a technique for summarizing large spatio- temporal images. In a recent
work, Shah et al. [171] proposed an algorithm for real-time summarization of data streams for
smart grid applications.

The use of information-theoretic measures [49, 191] to solve data analysis and visualization
problems is well-known. Mutual information has been used to perform data registration
[47,92,94, , ], view selection [194], and for quantifying information transfer from data

to image space [28]. For exploring similarities among level-sets, information theory has also
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been used [32, 203].Various decomposition of mutual information, called specific mutual
information and pointwise mutual information measures have become recently popular for
fusing multi-modal data [27] and multivariate sampling [66] for data reduction. For a more
detailed review of information theory applications in data analysis and visualization, interested

readers are referred to [42,43, , ].

5.5 Methods

In this work, we propose a new technique for summarizing a sequence of time-varying scalar
fields into a single scalar field that captures the dynamic temporal evolution of the data features.
The users can study the summary fields to obtain a comprehensive view of the time-varying
nature of the features without needing to go over each time step individually. This approach
achieves significant data reduction for the post hoc analysis while preserving the important
feature dynamics of a sequence of time steps so that analysis time is reduced and scientific
discovery is accelerated. In the following section, we first introduce the concepts of the
information theory measure that we use to quantify informativeness of specific data values over
time and then present the technique for producing time-varying data summaries for a sequence
of time steps. Note that we develop this algorithm for in situ use cases, where we run our
algorithm online when the simulation is running and access the time step data one-by-one in a

streaming fashion as they are produced.

5.5.1 Data Value Informativeness Quantification

Since the goal is to combine data from a sequence of time steps, it is important to quantify the
informativeness of each data point so that we can prioritize one data point over others during the
summarization process. In information theory [49], mutual information (MI) is a well-known

measure that estimates the amount of information overlap between two random variables and
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Figure 5.1: Visualization of | field generated using two consecutive time steps of the analytical
Tornado data set. Volume rendering technique is used to generate the visualization results. (a)
and (b) show the vortex region of the Tornado data and (c) shows the corresponding I field. In
this illustrative example, data from T=25 is observed and so the high /; valued region overlap
accurately with the vortex region at T=26 as shown in (e).

can be formally computed following Equation 5.1:

— Y ¥ plx,y)log L plx.y) (5.1)

yeY xeX ( ) ( )

In Equation 5.1, I(Y;X) is the MI between two random variables ¥ and X, y € Y represents
a specific value of ¥ and x € X is a value of X. The joint probability between x and y is
written as p(x,y) and the marginal probabilities of x and y are p(x) and p(y) respectively. MI
for two random variables computes to a single number reflecting the total shared information
between X and Y. Since we need information content of each data value so that we can perform
spatiotemporal d