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Abstract

Algorithms for recondructing phylogenies from character sequences encounier enormous
search spaces even for small numbers of taxa. Techniques are needed to speed up the
exploration of these spaces so that larger problems can be approached. In other problem
domainsneural networks have provided a framework for tackling complex problems very
quickly. Thisthesis describes a new architecture called KomPhy which makes use of
neural networks, provides proofs for the uppe (n?) and lower bounds(nlogn)of running
time as afundion of the number of taxa and sequence length, as well as adiscussion of
the expected time complexity (nlogn) Empirically KomPhy isfoundto befaster and, for
birth-death trees, more accurate than previousneural network solutions Although
KomPhy does improvethe state-of-the-art for neural net approachesit does not perform
aswell as other well established algorithms, such as neighborjoining[1]. A paale

implementation of KomPhy is aso presented.
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1 Introduction

1.1 Molecular Phylogeny Reconstruction

Phylogendiic andysisis the attempt to recongruct the historical evolutionary
relationships between biological organisms. Over the past few years the demand for
phylogeny recondruction has increased tremendouwsly: epidemiologists need to beable to
trace therapid course of anew virusQevolution quickly enoughfor tha knowledgeto
inform the creation of treatments, lawyers have used phylogenetics in court casesto
establish family relationships, and the study of biological diversity isincreasingly
dependent on phylogendic andysis to target conservation efforts [2].

Until genotypic data became available directly, endeavoring to recongruct
phylogenies had been the exclugve province of biologists who used comparative
anaomy and thefossil record to recongruct evolutionay trees. Technologies which
expoed DNA and proteinsto direct observation allowed more quantitative methodsof
recongruction to be proposd. Rather than looking exclusvely at the phenotype
expressed by an organism it became possible to look directly at the molecular coding that
determined that phenotype Themolecular sequences used to recongruct phylogenies can
congst of thousndsof characters and the possible number of trees tha can beinferred
fromthose characters grows rapidly with the number of taxa being andyzed (figure 1).
This shift from quditative to quantitative andysis necessitated the use of automated
computation. Over the past quater century computer algorithms have therefore come to

domnae the process of recongructing the hereditary relationships between organisms.
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Figure 1: There are 2"n! possible binary trees (O(n!) where n is the number of taxa
being analyzed. If Ny is the number of unrooted trees then the number of rooted
trees, N, is Ny(n—-1).

Thevariable n aboveis thenumber of species we would like to placein an
evolutionary tree while Ny isthenumber of possible way of arranging those speciesin an
unrooted binary tree. If at thetime of thebig bangthefastest computers opeating today
had started a brute force recondruction (examining each of the Ng tree topologies) of an
evolutionay treelinking only 25 species they woud still befar fromfinishing today.
Many current projects require therecondruction of phylogenetic trees congsting of

hurdreds of taxa. Tackling this enormmoussearch space quickly and accurately isthe

primary chdlengeto phylogendic recongrudion techniques today.



1.2 Neural Networks

A widevariety of approaches have been applied to the problem of phylogendic
recondruction, [3]. However, thereis aremarkable paudty of research into the
application of unsupeavised neural nework clugering algorithms to phylogendics. The
primary strength of neural networksisther ability to produce solutionsvery quickly even
in complex domeins A drawback of neura networksin many domainsis tha solutions
are often approximate. A self organizing map [3] (SOM) algorithm called SOTA [2] is
theonepublished effort to use an unsupavised network to recongruct phylogenies. The
algorithm described in this thesis provides an aternaive neural network approach in
order to place the SOTA agorithmin some perspective and to further andyze the
applicability of thistechnology to phylogendic analysis.

Neural networks are biologically ingired weighted graphs in which nodes are
andogousto neuronsin the nervoussystem, edges perform therole of dendrites and
axons and weights mediate information flow in afundiondly similar way to syngpses. A
weightis assodated with every inputcoming into every neuron. These neworks follow
theideas put forth by Ram—ry CajH in 1911[4] whofirst described thebrain as
condituted of simple interconnected computationd components acting in concert.
Neuroscience has added a great deal to our knowedgeof howthe brain works since
1911 butthebasic idea of massively paralel computationd systems composed of very
smple interconnected and adaptive information processing units has been so successful
tha thebiological complexity discovered over the past few decadesislargdy ignored
(though,identification of novd structural elementsin neural computationin thebrain has

sometimes led to new artificial neural nework designsg.



At thesmplest level abiological neuronis an information processing unit which
works with other neuronsto solve computationd problems. Each artificial neuronin a
neural network consgsts of scalar inputs and outputs and an arbitrary fundion, often a
sigmoid, which modifies theinputsto create the output These nodes, or neurons are
connected to oneanother via edges which map the output of oneneuron onto theinputof
oneor more adjacent neurons Each inputis assodated with aweightwhich can be
modified to increase or decrease the influence of tha inputon the computation performed
by the assocated neuron.

Theweights assodated with nodeinputs are andogous to therole of syngpsesin a
biological system which can be dampened or excited by the neuron@ environment.
Neural networks adapt by modifying these weights such tha the difference between the
neural networksQactud output and the desired output is minimized. The process of
measuring error and adgpting weights can be supavised, in which case the desired output
isexplicitly provided by thedesigne, or unaipevised, in which case the measurement of
error and resultant modification of inputweightsis directed by the network itself.

Almog all neural neworks operate in two phases, first they identify neuronsin
the system which have a particular impact onthe network® output as awhde (theimpact
can beeither postive or negative depending on thearchitecture); secondly alearningrule
isapplied to those neuronsto either enhance or subduethar influence on theresult.

Theearliest example of an unsupevised neura nework isthe competitive neural
network. Compeitive neural networks were ingired by the observation tha in some
clugers of neuronsin thebrain only a particular subset will fire given aparticular input

These active neuronsappear to dampen thefiring of axonsaroundthem when presented



with the appropriate inputs. Thisidea of having neuronsassodate themselves with a
paticular inputto theexcluson of surrounding neuronsgivesrise to thebasic

compditive neural network architecture.

Output Output
Neuron Neuron

W, W, Weight

Vector

Input

Input Neuron

Neuron

Figure 2: Schematic of a neural network. Notice that in the fully connected case the weight vectors
will have as many components as there are input neurons [34].

It isimportant to undestand that while neural networks are conceptudly
comprised of neuronsconnested by weighted directed edges they are amog never
implemented tha way. Often, a neural network isimplemented such tha each weight
vector is represented as arow in amatrix, these rows are updded throughmatrix
multiplication with theinputvector. For the neural network architecture described in this
thesis, theilluson of nodes and edges will be maintained even when theimplementation
congsts entirely of vectorsin aweight space -- ad dimensond vector space, whered is

thenumber of inputnodes and where each point in the weight space correspondsto a



potential inputsequence or set of weights. Since for each neuronthere are as many
weights as inputcomponents both weights and inputs can be mapped into weight space.
Artificial compditive neural nets congst of two types of neworks overlaid. First

aHemming net calculates the weighted sum of theinputsto the nework, usudly as adot

produd E wi =w-i=|w||i|cosé at each norrinputnode wherew isaweightvector, i is
thecurrent inpu vector, and ¢ isthe angle between i and w.

Hemming Network MaxNet

InputNeurons

Figure 3: The Hemming network passes the input from every input node to every output node where
weights and a processing function are applied resulting in values generated by the output nodes. The
MaxNet allows only the neuron with the maximum fitness to display its result.

Then aMaxNet ensures that only oneoutput neuron will actudly display its output This
is accomplished by having the neuronssuppress adjacent neuronswhos dot produd
outputislower than ther own. In afully connested MaxNet this resultsin asingle

winning neuron. Togéher these two networks comprise a competitive neural nework.



Competitive Neural Network
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Figure 4: The Hemming network and the MaxNet together form a competitive neural network.

The MaxNet opaating onthedot produd results of the Henning network chooses
theneuron with thelargest dat produd. Thedot produd of theweight and theinputwill

belargest where theweight vector has themod parwise similarities to theinputvector.

Let thevalueof nodei beX:
until X; doesn®changedo
foreach i do
Xi = Xj + ! i(#X) where # isnegative
end

end

Figure 5: The MaxNet algorithm converges to X; being 0 for all i but one. [Sa]



This selection process resultsin awinning neuronthat is closest to theinput
vector in weight space. Having identified the neuron which is mog similar to the input
sequence the network then applies alearning rule which further enhances the affinity of
thewinning neuronfor the current inpu sequence. Variouslearning rules are available;

all modify theweights assodated with thewinning neuron so tha it and theinput

sequence have a highe dot produd.
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Figure 6: Weight (neuron) movement towards input clusters in a two dimensional weight space.

Onecommon learning rule ssimply addsthe difference between thewinning neuronand
theinputsequence to thewinning neuron. On its own this would result in theweight
exactly equding theinput

Learningrule: weight,, = weight,, + " (input! weight,,)
Having theweight ssimply equd theinputvector would stop the network from being able

to generalize. Each output neuron@weight vector should ultimately come to approximate



the center of the set of inputsequences that it has become assodated with. Theweights of
thewinning neuron are therefore moved towardsthe input sequence by some fraction of
thedistance separating them. Thisfraction ! isreferred to asthe learning rate. The
optimal valuefor ! isusudly determined empirically.

Once awinning neuron has been selected and updaed the next element in the set
of sequences being andyzed is presented to the network as a series of valuesin theinpu
nodes and the cycle is repeated with a new winning neuron beng selected based onits
similarity to theinputand updaed to enhance tha similarity. From presentation to
presentation the neuron selected to learn may beselected over and over agan or a variety
of different neuronscould win. Each of these presentation-learning cycles comprises an
epoch.

One paticular problem tha may be encouniered istha of dead neurons. Dead
neuronsare those neuronswhos initial state is such that they are further away fromall
theinputsequences than any other neuron. Since the dead neuron will never be selected
to learn it remainsunchanged throughouttheepod. Thefind state of adead neuron may
communicate useful information aboutthe distribution of inputsequences if theinitial
states were choen to contain some discernable bias. If neuronsare initialized to random
locationslittle information can beganed from the existence of dead neuronssince they
were almog certainly left out of thelearning process dueto beng randonly assigned far
from any of theinputsequences. If however theinitial locationsof the neuronsare al the
same and in a neutral location then the existence of dead neuronsindicates that theinput
sequence locationsare so close togeher relative to the size of theweight space tha the

individud input appear equidistant. This resultsin thefirst neuronto be assocated with



an inputsequence winning when presented with al subsquent inputs and all other nodes
becoming dead neurons

Thestandad solution to the problem of dead neuronsis the use of aconscience
parameter [6]. The nework conience kegpsarecord of theratio of winsto losses for
each neuron and beginsto artificially improvethechance of aneuronwinningif it has
log during ahigh percentage of theinputpresentations This ensurestha every neuron
will bemoved towardstheinputs so tha the maximum number of potential partitionsis
notartificially reduced. Typically the consience parameter is an exponential fundion
that ensuresawin if aneuronloses 100%o0f thetime.

A particular application of competitive neural networksisin the partitioning of
samplesinto discrete sets. Such networks are called partitive neural network,s and they
have been applied to anumber of diverse problem domains[7] Partitive neworks
effectively patitiontheinpu space into » partitions where n isthenumber of neuronsin
the system.

Compditive neural networks form the basis of the KomPhy architecture while
SOTA isbased on Self Organizing Maps|[8]. Both approaches are based on neurons
being mappel into theinputspace and then migrating throughsuccessive applicationsof
alearning rule untl the average distances between the neuronsand theinputs are
minimized. Competitive neural networks are the oldest and simplest form of
unaupevised neural nework, while self organizing maps are a much more sophisticated
approach which buildsonthe competitive aspects of the competitive neural network
while introduang anumber of new conaepts such as neghborhood The SOM

architecture encodes the relationships between large numbers of nodes in topologies such
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tha each neuron has aneaghbahoodof adjacent neuronswhos outputit can cause to be
enhanced or inhibited at different stages in the presentation-learning cycle. SOMs are
capable of mapping thedistribution of inputvectors onto its nodegraph effectively
redudng thedimengondity of thedaain much the same way Multi-Dimensond Scaling
(MDS) does.

SOTA organizes the graph linking the competitive neuronsin the standad SOM
framework into a bifurcating tree rather than themore usud lattice. The neuronsthen
migrate and map the probability distribution of theinputcharacter sequences while
maintaining a tree structure throughtheneuron links. SOTA isbased on Kohonen's
unsupavised neural nework of self-organizing mapsand on Fritzke's growing cell
structures algorithm to condruct phylogenetic trees[9].

Supevised neural neworks (typically back propagation architectures) and other
self organizing maps have been applied to protein classification as a precursor to gene
expression andysis but notto phylogenetic recongruction per se ([10, 11, 12, 13, 14)).
The SOM approaches discussed in these papers, with the possible exception of [14] are
adaptationsof SOTA.

Hierarchical neural neworks|[5], of which KomPhy could be consdered an
example, congst of multiple neural neworks embedded into agraph. The neworks
within the graph can be single neuronsor complex neura architectures. Tree-structured
neural architectures are a specia type of hierarchical neural nework that have been used
extengvely in prindpd component andysis (PCA) which hasitself been used in gene

expression clugering [15, 16]. Decision trees, hierarchies of experts, classifiers and

11



especially scenegraph classifiers are typical applicationsfor hierarchical neural networks
[17].

By developing another unsupervised neural architecture, which is smpler than
SOTA, and compaingits peformance to SOTA aswell asto the standad fast
phylogenetic algorithm Neighba-Joining [1], the applicability of unsupervised neura

networks to the domain of phylogenetics can be better undestood.
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2 Kohonen Competitive Phylogenetics (KomPhy)

=2 KomPhy 0.1 Alpha

Input File Path:

I]nput.seq
Open Input File I

Conscience Learning Rate:

|]1001

Kohonen Learning Rate:

|]J.D4

Starting Epochs:

|]100

Convergence Threshold:

|]J.25

| Force Bifircation
| Observe Transvertion/Transiti
Transvertion/Transition Ratio:

|]J.25

Distance Metric:

|| Jukes Cantor
| Felsenstein, 1981
| Felsenstein, 1984

| K2P
| Euclidian

Run Analysis |
o | RMS Error Convergence Chart

2.1 Approach

The KomPhy architecture is a greedy clugering agorithm tha uses the same
framework as the quicksort sorting algorithm[19]. The patitioning fundionisatwo
neuron unsupevised competitive neural network. Sequences are mappel into real valued
vectors which at each stagein thealgorithm are segregated into two clugers. New neura
networks are created as needed to patition each of these clugersinto afurther two
patitions Thealgorithm proceeds recursively until each partition containsonly oneor
two sequences. Both of these cases are trivia since thereis only onephylogenetic

arrangement for oneand two taxa. Theresulting function call treeis the proposd
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phylogenetic recondruction. KomPhy could be described as a dynamic hierarchical
network architecture thoughthe component neural nets are typically heterogeneousand
fixed in traditiond hierarchical networks.

Encoding of inputsequences such tha they can beopeated on by the neural
networksis of central importance sinceit is that representation which will definethe
topology of the solution space. Here DNA sequences are mapped into thereal-valued
weight space by representing each character as a point within the volume of a
tetrahedron. The apices of the tetrahedron represent thefour bases. This representation
allows neuron weights to represent intermediary values between the nommally discrete
bases and to move smoothly within the solution space. The difference between the
current state of a character in aweightvector and the corresponding character in an input
vector is easily determined by looking at the Eudidean distance between the two within
thetetrahedron. Using the Eudidian distance enaures that the bases are equidistant from

oneanothe and fromthe center of thevolume.

Cytosine
(0.0,1.0,1.0)
Adenine
(0.0,0.0,0.0
Guanine
(2.0, 1.0, 0.0)
Thymine
(2.0,0.0, 1.0)

Figure 7: Representation of a character as a three component vector within the volume of a
tetrahedron in which the apices are four nucleotide bases.
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Given the Eudidean distance between a character in theweight vector of anode
and the corresponding character in aDNA sequence thetotal distance between theweight
and the sequence can determined. Thetraditiond Kohonen learning rule [20], in which
the distance measure is the dot product of the two sequence vectors, was used in an initial
version of KomPhy but Eudidean distance and phylogenetic distance metrics such as
Jukes-Cantor [21], have aso been applied successfully. More complex distance metrics
designal specifically for nudeotide sequences (F84 [22] and the Tamura-Nei [23]
metrics) were also implemented butinvolve taking thelog of a negaive when the
distance istoo large, this make them difficult to apply when two sequences are very
different from oneanother, asisthecase with theinitial starting condition of the neuron
weights. Further work, perhgpsinvolving the use of asmple metric initially followed by
amore complex oneas theweights convage, needsto be donebefore F84 and
Tanamura-Nei can beused reliably with KomPhy.

All phylogendtic metrics were modified to opeate on real-valued characters
rather than themore usud discrete ones. The Eudidean distance is a close approximation
to unweighted parsimony in a continuoussolution space. The SOTA program infers
distances between sequences by oberving theratios of character pars at corresponding
sites and encodes the input sequences as a vector of theresulting probabilities.
Comparisonsof Jukes-Cantor modd correction and the Eudidean distance fundion as
well astheresults generated by SOTA are explored in theresults section.

A previousversion of thealgorithm peformed randomrestarts of theinitial
neuron weights and ran the network successively with twice as many epochsas the

previousiteration until two consecutive runsyielded the same partitioning. This process

15



would hdp to avoid local minima (of which phylogenetic tree space can have many [24])
and provided adynanmic criterionfor deciding when to stop iteratively presenting each
network with samples. A related techniquecommon to neural neworks was also tried in
which theinitial weights are set to two of theinputtaxa. Theinitial weights determined
in these two ways were foundto completely determinetheresultant topdogy.
Empirically, usng neutra initial values for the nework weights generated the same
topology as the best of therandonly initialized weights. Theneutral points were found
by setting every character in theweight® vectors to be the center point of thetetrahedron
which defines base-par space. This point is equidistant from all possible inputvectors
and so does notintrodue an unnecessary bias on theinitia relationship between weights
and the sequences beng andyzed.

Since theweights are initialized to neutral locations, KomPhy does not generate
any dead neuronsduringits tree recongructions When randomweights were used, dead
neuronsoccurred in asmall butsignificant portion of therecongructions Inthose
expeiments where a conscience paameter was used to alleviate this problem, accuracy
was degraded by 50 percent or more, even when no dead neuronswere present. Thelack
of dead neuronswhen usng neutral initial weightsindicates tha very little structurein
thedata (aslittle as onecharacter difference) is sufficient for KomPhy to partitionthe

sequences.
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Figure 8: The KomPhy architecture. The set S; in the graph above is the input
sequences. The figure to the left shows how the algorithm partitions the input
recursively until the base cases are reached. S0 = (acg...), S1 = (tac...), S2 = (cgc...),
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Figure 9: Each partitioning neural network shown in figure 3 is a competitive network which maps
the input sequence into an |S;| dimensional space (where |S;| is the length of the sequences). The
distance from each sequence in the sequence space to the weights in weight space is then calculated.
The neuron with the weight vector closest to the sequence becomes identified with that sequence and
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is moved closer to it in weight space by the learning rule (Equation. 1), b; is the bias for the i weight.
Biases are used to direct weight convergence, with a conscience parameter for example. Argmax
returns the larger of its two arguments, i.e. the neuron which is most similar to the input.

wwz’nner(t + 1) = wwz’nner(t) + a(S(t) = wwz’nner(t)) (1)
Equaion 1 shows the Kohonen learning rule [8] which is applied to the weights of the
winning neuron and serves to move the neuron in weight space closer to thelast input

sequence. w isthe vector of weights assodated with thewinning neuron. t isthe

winner

current time step. S istheinputsequence and a isthelearning parameter.

18



Input: a set of n sequences, S, with |Sj| =k,
a competitive neural network consisting of w weights, W,
a function D(W;,S;) that returns the distance between W; and S; using
some metric.
a learning function L(W;, S;) as defined in Equation 1 above.

Output: w partitions where D(W;, S)) for all S; members of P; is less than
D(W;, Sp) for
any Sy not a member of P;.

begin Partition( S )

if |S| < 3 then
base case
return;
end

while counter < epochs do
while j < kdo
winner = argmax( foreach weight W; do D(Wi, Sj) end )
pUSh(Pj, Wwinner)

end
foreach weight W;
foreach element v of P;
L(W1, V)
end
end

counter «— counter + 1;
end

Figure 10: Algorithm for the Partition function in KomPhy
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2.2 Time Complexity

The Quicksort framework makes therunning time andysis easy since the
patitioning step islinear in the number of charactersin the sequence.

In thefollowing discussonn = |S|, m = |S|, where Sis a set of sequences, each of
which is a set of characters. Theworst-case running time occurs when the partitions P,
are unbdanced such tha only onesequenceisin P, and |S|- 1 arein P,. Thisleadsto the
interna nodes doing n - depth work for each patitionor n + (n-1) + (n-2) +E+ (n-n
+ 1) total partitioning cog, which is O(n®). In the best case each partition cogts n/2%"™" or
nlog(r) total cog. Therunning time is therefore dependent onthe partition sizes at each
step [25] If we assume the patition sizes are drawn from a uniform distribution, then the
probability of a particular patitionsizeis p(|ni|$2)=3/n for thetrivia partitionsizes(i.e.
therecursion base cases) and p(jni| = k) = 1/n, k=3, 4, E , n - 1 for patitionswhich are
large enoughto berepartitioned. This observationyieldsthefollowing recurrence

relation:
T(n) :%(T(l) +T(n-12 +§(I’(n— d) +T(n))) +0(n) (2)

(T =runningtime, n = inputsize)

Using the earlier result tha theworst case runningtime is O(n?), we can state that:
1(T(l) +T(n-1))= 1 (@(1) + O(nz)): O(n) nowthed(n) term in Equaion 2 can be used
n n

von(l

to absorb thel(T(l)+T(n—l)) termyielding 7'(n) =l°/9( (T(n( d)+T(n))$+! (n).
n n &= #

Solving this recurrence relationyields an expected running time of O(nmlog(n)) for a

uniform distribution of patition sizes[26]. There is still a condant-factor difference
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between the expected running time and thelower boundon therunning time. Therunning

time then dependsheavily onthe depth of thetree beng formed.

Best Case Worst Case

{So/ S1, Sz S, Sa}
{5n. S1. . Sa. S v

=15 =11 +by =y
it Sii+h, D
D—uwéu bl=>8 Sl =
{Sn. S5. S} {S:. Sa}
{SO, Sy, Sy, 53}
1wt S)l+h, o
|:|'i> =§ Trivial Case Ql I SMzS
Iy = 1+, DA
/ \ 11, =S [+,
S
150 S} !

S Sa {So, SZ, 53}
Trivial Case
11 - S|l +by ::8
Sn S,
{So, S3}
Trivial Case >
So S;

Figure 11: Best and worst case tree structures for time complexity. The worst case tree results in
O(nzm) running time while the best case running time is Q(nmlogn).
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3 Experimental Results

3.1 Methodology

Tree Generation

KomPhy, SOTA, and NeighborJoining were run over numerousdaasets, each of
which congsted of 96 trees with thefirst tree having four taxa, the next five taxa, and so
onuntil the96" tree had 100taxa. Two tree-generation modds were used: Birth-Death
and Uniform. Birth-Desath trees are generally more symmetric (bdanced) than uniform;
this difference makes it possible to test the effect tree badance on KomPhy @& accuracy and
running-time. Ultrametric birth-death trees were generated with Phylogen 1.0 [27],
uniform trees, in which al topologies are equdly likely, were generated with Component
2.00a[28]. Phylogen was used with a simple birth-desth process with a condant birth rate
and death rate. Thebranch lengths of the birth-deeth trees ranged from 0.005t0 1.2. The
branch lengthsfor uniform trees were drawn froma uniform distribution of values from
0.0to 1.0. Here branch length is defined to betheexpected number of trandtionsper site
inaDNA sequence. A branch length of 0.05would indicate tha five characters would be
expected to changevaluein a sequence of 100 characters.
Sequence Generation

Character sequences were generated from trees with Seg-Gen 1.2.5 [29]. During
the sequence generation process, branch lengthswere scaled by 1.4, 1.2, 1.0, 0.8, 0.6, 0.2,
0.1, and 0.05to create differing sets of sequences. Sets of sequences were created with
1,000 characters each in mog cases. Sequences with 500and 2,000 characters were al'so

geneated for compaison. All sequences were generated usng the Jukes-Cantor modd.
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Accuracy Measure

KomPhy, SOTA, and NeighborJoining were run over all data sets and the
recongructed trees compared to themodd tree. Several difference measurements were
congdered, agreement subtree, the Nearest-Neighbor interchange metric, the partition
metric, quartet dissimilarity measure, thetriplet dissimilarity measure and the Robinson-
Foulds metric [32]. Noneof these methodsdeviated subdantially from the Robinson
Foulds distance given by the freedist program in Felsengtein@ Phylip 3.6 aphasuite [30],
which was ultimately used to score the success of thealgorithms. Neither birth-death nor
uniform trees can be congdered to accurately represent the phylogendtic trees seenin
naure, [31] however, they do provide some indghtinto thetypes of topologies these
algorithms are able to recover.
Experiment Platforms

Theserial implementation experiments were conducted on an Intel Pentium [11
running at 500 megahertz with 128 megabytes of RAM running Debian Linuxusng the
GNU. Parallel experiments were peformed on eight nodes of the Blackbear VA Linux
clugter at the University of New Mexico@® Center for High-Performance Computing
(HPC@UNM). Blackbear has 32 Pentium 111 processors running at 550 megahertz each
with 500 megabytes of RAM per node Nodesin the Blackbear system are interconrected
throughMyrinet. The GNU g++ compiler was used with optimization flags
Neighbor-joining Implementation

Theneghbokjoining program used was tha foundin Felsengtein® Phylip 3.6

alphapackage [30]. Neighborjoining was run with Jukes-Cantor modd correction.
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3.2 Results

Model Correction

The accuracy and speed of KomPhy relative to SOTA and neighborjoining was
evauated over variousaverage branch lengths generating tree topdogies, and modd
corrections KomPhy was run usng a Eudidean distance metric and onebased on the
Jukes-Cantor modd correction. Overal the Jukes-Cantor metric showed minimal
improvement over the Eudidean metric and in many cases the Eudidean metric actudly
resulted in shorter Robinson-Foulds distances. Running time was not adversely changed

by udng the Jukes-Cantor modd correction.

Comparison of KomPhy over Different Tree Topologies

Five pars of treeswith 64, 128,256,512,and 1,024 taxa each were designed such
tha onetreein thepar (tree A) has depth equd to the nunmber of taxa (a caterpillar tree)
and the secondtree (tree B) has depth equd to logx(number of taxa) (complete baanced
tree). Tree A in each par isthedespest tree possible while tree B is the shdlowest.
Branch length was fixed at 6 changes pe hunded characters. These two trees are at the

extremes of topology and should provide some ingghtinto theinfluence of topology on
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running time and accuracy.

£ ABEAMBARERARED

A " B

Figure 12: Best (A) and Worst Case (B) Trees for KomPhy running-time.

As suggested by theandysisin Section 2.2, running time was consstently larger
for degper treesin theidealized cases above However, the absolute difference in running
time was small: for 64 taxa thedifference in running time was 3%, for 128it was 4%.
Figure 14 plots therunning times for uniform and birth-degth trees. By looking at the
recongructed tree produced by KomPhy fromtheworst modd tree it can be seen that the
fast running time was theresult of KomPhy flattening the tree and making it more
symmetric. This biasin KomPhy@ recongruction serves to ensure tha the worst-case
running timeis unlikely to occur since KomPhy is biased towards recongructing trees so

tha they are more badanced than they should be
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Comparison of KomPhy's Running Time over
Birth-Death and Uniform Trees

0:05:46 -
0:05:02
0:04:19
0:03:36

Uniform
....... Birth-Death

0:02:53

0:02:10
0:01:26
0:00:43
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Time
(hours:minutes:seconds)

4 12 20 28 36 44 52 60 68 76 84 92
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Figure 13: Little difference between the running time for birth-death trees and uniform trees is
discernable.

As expected, the accuracy of the KomPhy agorithm is highly dependent on the
degree to which the generating trees topology deviated from the symmetric. A full tree
(completely bdanced) was recongructed with a RF error of 0.09, thetree of maximal
depth was recongructed with an RF error of 0.42 Thisrelationship isfurther bome out
by comparing accuracy of KomPhy when it recongructs birth-death trees vs. uniform

trees.
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KomPhy (Euclidian) Error Rate Comparison between
Unform and Birth-Death Trees (scaled by 0.2)
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Figure 14: Disparity between accuracy of uniform and birth-death tree reconstruction. Error % is
the running average of three adjacent data points. The random reconstruction error rate was
determined by taking pairs of uniform trees and birth-death trees and finding the RF distance
between them then averaging the result. Birth-death random reconstruction has a lower RF distance
because birth-death trees are more confined in their topology than uniform trees are.

KomPhy is much more accurate when applied to Birth-Death trees than when applied to
Uniform trees. Thedashed linesindicate the RF error when two randomuniform or birth-
desth trees are compared. This provides some baselinefor comparing KomPhy @
recondruction agang tha which chance alonecoud have produed. Since Birth-Death
trees are more confined and less variable than uniform trees randam recongruction tends
to bemore successful -- i.e. birth-death trees are easier to recondruc. Even when taking
tha into accountKomPhy does significantly better on birth-death trees than on uniform

trees.
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Figure 15: Tree A is a typical birth-death tree, tree B is a typical uniform tree. Tree A was recovered
by KomPhy with an RF error of 7%, tree B was recovered with an RF error of 30%.

Comparison with other Reconstruction Algorithms

Two other recongruction algorithms were chosen for comparison. SOTA is based on Self
Organizing Mapswhich, as was discussed in Section 1.1, istheonly other neural network
approach to phylogendic recongruction. Neighborjoining was selected for comparison
because it is probably themog popukr fast recongruction algorithmin use. Sequence

L ength Requirements for Phylogenetic Methods |.
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Robinson-Foulds Error Percentage
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Figure 16: Comparison of birth-death tree reconstruction accuracy for Neighbor-Joining, SOTA,
and KomPhy. Error % is the running average of three adjacent data points. For this particular run
SOTA’s reconstruction of the trees with 13, 14, 46, 81, 95, 96, 97, and 99 taxa did not converge on a
topology within 3,000 cycles (SOTA typically converges in less than 200 cycles). Those reconstruction
attempts were left out of the data set and the average RF for the nearest three reconstruction
attempts were used to fill in the gap.

Neighborjoining clearly produces the mog accurate recongructions notonly in this

case, butalso for uniform trees, KomPhy®@ mean RF distance over these 100treesis

about5% less than NJ@ mean RF distance. SOTA® mean RF distance is the largest with

an error rate of around20%
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KomPhy (Euclidian) and SOTA run on Uniform Trees (scaled by
0.2) and with Sequences Generated using Jukes-Cantor
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Figure 17: Comparison of uniform tree reconstruction accuracy for SOTA, and KomPhy. Error % is
the running average of three adjacent data points.

Neighborjoining was foundto be very accurate onuniform trees: its RF distance never
rises above0.02. Both neural network approaches do very poaly when recondructing
uniform trees, with KomPhy bengtheless accurate of thetwo. Clearly symmetric trees
match the clugering bias of KomPhy and SOM to a much greater degree than asymmetric
trees do. Thisis notsurprising since both approaches effectively reduce the

dimengondity of ther inputs and so are peforming an averaging process.
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Branch Lengths and Statistical Consistency
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Figure 18: Reconstruction of trees by KomPhy with scaled branch lengths and varying with various
sequence lengths. Average Robinson-Foulds error for 0.2 birth-death trees: KomPhy: 11%.

Scaling the branch lengths of Birth-Death trees resulted in marked improvement in

KomPhy( accuracy. For treesin which 30% of the characters on average were expected

to changeper branch, afull third of the edges placed by KomPhy in therecongructed tree

were incorrect. When the expected number of changes per sequence per branch was

reduced to 0.06, the number of misclassified edges was haved.

Thenomalized RF distance, over al 96 trees and usng the Eudidean metric, was

0.11. Doubling thenumber of charactersto 2000resulted in an improved score of 0.10.

Surprisingly, having thenumber of characters also resulted in an improved score of 0.10.

Nine-hunded and ninety-four sets of sequences with lengthsfrom 4 to 1,000were

geneated from and given to KomPhy to recondruct. No Robinson-Foulds vauefor all

these trees was more than 0.03 apart for all sequence lengths This 0.03 variation could be
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explained by variationsin the sequences introdued by Seg-gen, since notrendin RF
distances were observed as a fundion of sequence length. Some sequences with as few as
104 characters were observed to have better RF distances than recondructionsover the
same tree with 2,000 characters. Thereis noindication therefore tha KomPhy is

statistically congstent.

Model Correction
Two distance fundionswere foundto work well in the KomPhy framework:
Eudidean distance and the Jukes-Cantor distance. Thefollowing chats showtherelative

error rates for the two distances when applied to recongructing birth-death and uniform

trees.
Jukes-Cantor Model Correction for Birth-Death
Trees
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Figure 19: Comparison of the Euclidean and Jukes-Cantor distances when used by KomPhy to
reconstruct birth-death trees.
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Surprisingly the Eudidean distance outpeforms the Jukes-Cantor distance when applied
by KomPhy even thoughall the trees used in these experiments were generated with the
Jukes-Cantor modd. With uniform trees, onthe other hand, usng the Jukes-Cantor

distance fundion generates dightly more accurate trees usng the Eudidean distance.

Jukes-Cantor Model Correction for Uniform Trees
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Figure 20: Comparison of the Euclidean and Jukes-Cantor distance when used by KomPhy to
reconstruct birth-death trees.
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Comparison of Running Times for SOTA, KomPhy and Neighbor-Joining
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Figure 21: Comparison of SOTA and KomPhy total running times. Neighbor-joining reconstructed
trees much more quickly than either KomPhy or SOTA. Neighbor-joining was faster than SOTA and
KomPhy for all trees examined.
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Figure 22: Comparison of per taxa running time between KomPhy and SOTA. A hypothetical
mnlog(n) algorithm with a cost for m of two seconds is plotted for comparison.

34



Experimental Results Summary

For birth-death trees KomPhy was foundto produce recongructionswith an
averageerror rate of 10%which is about5% more accurate than SOTA and about5%
less accurate than neighborjoining. For uniform trees SOTA was more accurate than
KomPhy by 2-3%, and neighba-joining was more accurate by about30%. Neighbor
joining was fourd to perform very well on theuniform trees presented to it with error
rates never rising above2 or 3 percent. Both neural network architectures on the other
hand produced very poor recondructionswith error rates of between 25 and 35%
KomPhy produced themog accurate recongructionswhen branch lengthsdid not exceed
24 changes pe 100characters with the error rate rising to between 25 and 30% when
maximum branch lengthswere allowed to exceed 1.0 (Figure 19).

Empirically the difference between therunning-time over worst case and best
case trees with up to 1024taxa was foundto beonly 10%. KomPhy@® has an aversion to

creating trees with imbaanced topologies tha result in adegradaion of itsrunning time.
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4 Parallel Implementation

4.1 Approach

The presentation step of the KomPhy algorithm isamenable to paralelization
since the distance between sequences and weights is independent throughoutf the
learning step is fully decoupled by usng batch learning. Batch learningisfundiondly

equivaent to interlaced learning, but allows an entire epoch of presentationsto occur

KomPhy Timing Profile

(Average over 10 samples between 5 and 95 Taxa)

Other Kohonen
0% Learning
13%

Presentation
of Sequences
87%

Figure 13: Time spent in calculating distances from weights to sequences (presentation of sequences),
in applying the learning function (Kohonen learning), and in all other operations (overhead)
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before the need to updde theweight values (which mug agree across all processors).
Parallelizing the learning step was consdered butevery sequence in the system effects
the changein weights. To synchronize the changes would cos more in communication
than would be saved in local computation. KomPhy was profiled in order to discover
whethe parallelizing the presentation step would result in significant gans Profiling
showed tha 87% of thetime KomPhy was cal culating distances between weights and
sequences. (This percentage was the average over 96 runson trees having between 4 and
100taxa with KomPhy configured to iterate over 500 epochs) Parall€elization of
sequence presentation would therefore have a significant impact onoverall running time.
Presentation time was also determined to grow faster as taxa were added than learning or

overhead.

Running-time Growth
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Figure 24: Time cost growth for presentation, learning, and overhead in the serial version as an
incentive to parallelize the presentation step.

37



Theparallel implementation of KomPhy makes two changes to the seria version. First,
thefor loopwhich cycles throughthe presentation of sequences to the neural network and
calculates thewinning neuron in each case is modified so tha asequenceis only
presented if the sequence number modulusthe number of processorsis equal to thelocal
processor ID. This effectively divides thework such tha each processor does roughly n/p
work where n isthe numbe of sequences and p isthe nunber of processors. Once each
processor has calculated which neuronisthewinner of each sequence, anew fundion
caled synch partitions iscaled. Thisfundion packages the association of winning
weightto sequence with an integer paring fundion. Thisis accomplished with the MPI
fundionmpi_allgatherv [33]. Once al processors have the globd partitioning for the
current epoch the Kohonen learning algarithmisrunjud asin theserial version. Batch
learningisused in order to achieve the separation of sequence presentation and learning
required to parallelize the presentation step.

This approach has the ben€fit that it does notdisturb the serial implementation at
al. Thedivision of sequencesto processors assigns all thework to processor 0 in the
serial case and can smply skip thesynch_partitions step if theprogram is notrunning

inpaalel.
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Input: alocal set, P, of patitions
aset, N, of processors
assume an integer paringfundion pair( x, y)
assume an integer par reversal fundion unpair(z)
Output: aglobd set, Q, of partitions
begin synch_partitions( P)
I = Ninis
j=1A
foreach sequencej in P do
send_aray;; % par(P;, S)
end

mpi_allgatherv(send_aray, receive_aray )

foreach element m of receive_aray do
<Qi, S> = unpar( receive_araym)
puh(Qi, &)
end
return Q;

end

Figure 25: Algorithm for synchronizing local partitions, where the sequences in the local
partition are those which have modulus of their index equal to the processor index.
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4.2 Results

A significant redudionin running time was observed after parallelization.
Running time over asingle 97 taxa tree for the presentation step was reduced from 48
secondson a single processor to 28 secondson two processors, a42%redudionin
running time. Overall running time was reduced from 60 secondsto 40 seconds a 30%
redudion. Running KomPhy on 3 processors reduced the presentation time to 10 seconds

for an 80%redudion over the serial case. Total running time was reduced to 20 seconds

or a66% redudion.
Parallel Running-Time
(97 Taxa)

70
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50 +
o 40 - O Owverhead
£ O Sequence Presentation
- .

30 m Kohonen Learning

20

1 2 3 4 5 6 7
Number of Processors

Figure 26: Parallel running-time of presentation step, overall reduction in running time, and
eventual increase in communication overhead. The data used to create this chart came from a single
run of the parallel implementation.
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5 Summary and Conclusions

In thisthesis, anew unsupevised neural network approach to phylogendic
recongruction was described and andyzed. Comparisonswere made between the new
approach and existing methodsinduding SOTA, which isthe closest existing algorithm
to KomPhy, and NeighborJoining, which isthemos commonly used fast recongruction
algorithm. Therunning time of KomPhy was andyzed and foundto be quadratic in the
worst case but O(nlogn)in theexpected case. SOTA is described asalinear algorithm but
expeimentation demondrates KomPhy to be much faster (at least for trees with less than
100taxa) andin the case of birth-death trees more accurate.

Komphy was not foundto be accurate enoughto compete with neghborjoining
(O(n%) when applied to uniform or birth-death trees. KomPhy(@ failure in this regard may
indicate that competitive neural network approachesin general may notbeas well suited
to phylogenetic recongruction as direct algorithms are. Thisisfurther suppoted by the
relative similarity between the accuracy of SOTA and KomPhy despite thar quite
different representationsof the search space and the differing frameworks within which
the networks were embedded.

Thisisnotto say tha the continued study of competitive neural approaches may
not bear fruit in thefuture butit does seem to suggest tha the averaging effect of
mapping nodes onto a solution space may beinaufficient to guaantee acceptable
recongructions Theindvidud pahsweights take throughweight space are susceptible
to local minimaand to therelative movements of other neurons The comparisonto
neghbokrjoining may beingructive since in many ways neghborjoiningistheinverse

strategy to KomPhy and SOTA. Whereas compditive neural networks and self
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organizing mapsare top-down algorithmstha iteratively move from themore genera
solution to more particular ones, neghborjoining starts by creating an initial partition of
jug two taxa and then builds the general structure from the successive addition of single
taxa. This bottom up approach seems to do better than KomPhy because errors near the
root may propagae throughoutthe all subtrees whereas errors made near the leaves are

localized.
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