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Abstract 

 
Algorithms for reconstructing phylogenies from character sequences encounter enormous 

search spaces even for small numbers of taxa. Techniques are needed to speed up the 

exploration of these spaces so that larger problems can be approached.  In other problem 

domains neural networks have provided a framework for tackling complex problems very 

quickly. This thesis describes a new architecture called KomPhy which makes use of 

neural networks, provides proofs for the upper (n2) and lower bounds (nlogn) of running 

time as a function of the number of taxa and sequence length, as well as a discussion of 

the expected time complexity (nlogn). Empirically KomPhy is found to be faster and, for 

birth-death trees, more accurate than previous neural network solutions. Although 

KomPhy does improve the state-of-the-art for neural net approaches it does not perform 

as well as other well established algorithms, such as neighbor-joining [1]. A parallel 

implementation of KomPhy is also presented. 
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1 Introduction 

 
1.1 Molecular Phylogeny Reconstruction 

Phylogenetic analysis is the attempt to reconstruct the historical evolutionary 

relationships between biological organisms. Over the past few years the demand for 

phylogeny reconstruction has increased tremendously:  epidemiologists need to be able to 

trace the rapid course of a new virus’ evolution quickly enough for that knowledge to 

inform the creation of treatments, lawyers have used phylogenetics in court cases to 

establish family relationships, and the study of biological diversity is increasingly 

dependent on phylogenetic analysis to target conservation efforts [2]. 

Until genotypic data became available directly, endeavoring to reconstruct 

phylogenies had been the exclusive province of biologists who used comparative 

anatomy and the fossil record to reconstruct evolutionary trees. Technologies which 

exposed DNA and proteins to direct observation allowed more quantitative methods of 

reconstruction to be proposed. Rather than looking exclusively at the phenotype 

expressed by an organism it became possible to look directly at the molecular coding that 

determined that phenotype. The molecular sequences used to reconstruct phylogenies can 

consist of thousands of characters and the possible number of trees that can be inferred 

from those characters grows rapidly with the number of taxa being analyzed (figure 1). 

This shift from qualitative to quantitative analysis necessitated the use of automated 

computation. Over the past quarter century computer algorithms have therefore come to 

dominate the process of reconstructing the hereditary relationships between organisms. 
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Figure 1: There are 2nn! possible binary trees (O(n!) where n is the number of taxa 
being analyzed.  If NU is the number of unrooted trees then the number of rooted 
trees, NR, is NU( n – 1 ). 
 

 The variable n above is the number of species we would like to place in an 

evolutionary tree while NU is the number of possible way of arranging those species in an 

unrooted binary tree. If at the time of the big bang the fastest computers operating today 

had started a brute force reconstruction (examining each of the NR tree topologies) of an 

evolutionary tree linking only 25 species they would still be far from finishing today. 

Many current projects require the reconstruction of phylogenetic trees consisting of 

hundreds of taxa. Tackling this enormous search space quickly and accurately is the 

primary challenge to phylogenetic reconstruction techniques today.  
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1.2 Neural Networks 

A wide variety of approaches have been applied to the problem of phylogenetic 

reconstruction, [3].  However, there is a remarkable paucity of research into the 

application of unsupervised neural network clustering algorithms to phylogenetics. The 

primary strength of neural networks is their ability to produce solutions very quickly even 

in complex domains. A drawback of neural networks in many domains is that solutions 

are often approximate. A self organizing map [3] (SOM) algorithm called SOTA [2] is 

the one published effort to use an unsupervised network to reconstruct phylogenies. The 

algorithm described in this thesis provides an alternative neural network approach in 

order to place the SOTA algorithm in some perspective and to further analyze the 

applicability of this technology to phylogenetic analysis. 

Neural networks are biologically inspired weighted graphs, in which nodes are 

analogous to neurons in the nervous system, edges perform the role of dendrites and 

axons, and weights mediate information flow in a functionally similar way to synapses. A 

weight is associated with every input coming into every neuron. These networks follow 

the ideas put forth by Ramón y Cajál in 1911 [4] who first described the brain as 

constituted of simple interconnected computational components acting in concert. 

Neuroscience has added a great deal to our knowledge of how the brain works since 

1911, but the basic idea of massively parallel computational systems composed of very 

simple interconnected and adaptive information processing units has been so successful 

that the biological complexity discovered over the past few decades is largely ignored 

(though, identification of novel structural elements in neural computation in the brain has 

sometimes led to new artificial neural network designs).  
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At the simplest level a biological neuron is an information processing unit which 

works with other neurons to solve computational problems. Each artificial neuron in a 

neural network consists of scalar inputs and outputs and an arbitrary function, often a 

sigmoid, which modifies the inputs to create the output. These nodes, or neurons, are 

connected to one another via edges which map the output of one neuron onto the input of 

one or more adjacent neurons. Each input is associated with a weight which can be 

modified to increase or decrease the influence of that input on the computation performed 

by the associated neuron.  

The weights associated with node inputs are analogous to the role of synapses in a 

biological system which can be dampened or excited by the neuron’s environment. 

Neural networks adapt by modifying these weights such that the difference between the 

neural networks’ actual output and the desired output is minimized. The process of 

measuring error and adapting weights can be supervised, in which case the desired output 

is explicitly provided by the designer, or unsupervised, in which case the measurement of 

error and resultant modification of input weights is directed by the network itself.   

Almost all neural networks operate in two phases; first they identify neurons in 

the system which have a particular impact on the network’s output as a whole (the impact 

can be either positive or negative depending on the architecture); secondly a learning rule 

is applied to those neurons to either enhance or subdue their influence on the result. 

The earliest example of an unsupervised neural network is the competitive neural 

network. Competitive neural networks were inspired by the observation that in some 

clusters of neurons in the brain only a particular subset will fire given a particular input. 

These active neurons appear to dampen the firing of axons around them when presented 
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with the appropriate inputs. This idea of having neurons associate themselves with a 

particular input to the exclusion of surrounding neurons gives rise to the basic 

competitive neural network architecture. 

 

Figure 2: Schematic of a neural network. Notice that in the fully connected case the weight vectors 
will have as many components as there are input neurons [34]. 

 
It is important to understand that while neural networks are conceptually 

comprised of neurons connected by weighted directed edges they are almost never 

implemented that way. Often, a neural network is implemented such that each weight 

vector is represented as a row in a matrix, these rows are updated through matrix 

multiplication with the input vector. For the neural network architecture described in this 

thesis, the illusion of nodes and edges will be maintained even when the implementation 

consists entirely of vectors in a weight space -- a d dimensional vector space, where d is 

the number of input nodes and where each point in the weight space corresponds to a 
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potential input sequence or set of weights. Since for each neuron there are as many 

weights as input components both weights and inputs can be mapped into weight space. 

Artificial competitive neural nets consist of two types of networks overlaid. First 

a Hemming net calculates the weighted sum of the inputs to the network, usually as a dot 

product ! ="= #cosiwiwwi  at each non-input node, where w is a weight vector, i is 

the current input vector, and θ is the angle between i and w. 

 

Figure 3: The Hemming network passes the input from every input node to every output node where 
weights and a processing function are applied resulting in values generated by the output nodes. The 
MaxNet allows only the neuron with the maximum fitness to display its result. 

 
Then a MaxNet ensures that only one output neuron will actually display its output. This 

is accomplished by having the neurons suppress adjacent neurons whose dot product 

output is lower than their own. In a fully connected MaxNet this results in a single 

winning neuron. Together these two networks comprise a competitive neural network. 

Input Neurons 

Hemming Network MaxNet 
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Figure 4: The Hemming network and the MaxNet together form a competitive neural network. 

 
 The MaxNet operating on the dot product results of the Henning network chooses 

the neuron with the largest dot product. The dot product of the weight and the input will 

be largest where the weight vector has the most pairwise similarities to the input vector. 

 

Figure 5: The MaxNet algorithm converges to Xi being 0 for all i but one. [5a] 

 

 

Input Neurons 

Competitive Neural Network 

Let the value of node i be X: 

 until Xi doesn’t change do 

  foreach i do 

   Xi = Xi + Σj≠i(ωXj) where ω is negative 

end 

 end 
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This selection process results in a winning neuron that is closest to the input 

vector in weight space. Having identified the neuron which is most similar to the input 

sequence the network then applies a learning rule which further enhances the affinity of 

the winning neuron for the current input sequence. Various learning rules are available; 

all modify the weights associated with the winning neuron so that it and the input 

sequence have a higher dot product. 

 

Figure 6: Weight (neuron) movement towards input clusters in a two dimensional weight space. 

 

One common learning rule simply adds the difference between the winning neuron and 

the input sequence to the winning neuron. On its own this would result in the weight 

exactly equaling the input.  

Learning rule: )( oldoldnew weightinputweightweight !+= "  

Having the weight simply equal the input vector would stop the network from being able 

to generalize. Each output neuron’s weight vector should ultimately come to approximate 

Key 

 Input 

Weight 
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the center of the set of input sequences that it has become associated with. The weights of 

the winning neuron are therefore moved towards the input sequence by some fraction of 

the distance separating them. This fraction ! is referred to as the learning rate. The 

optimal value for !  is usually determined empirically. 

 Once a winning neuron has been selected and updated the next element in the set 

of sequences being analyzed is presented to the network as a series of values in the input 

nodes and the cycle is repeated with a new winning neuron being selected based on its 

similarity to the input and updated to enhance that similarity. From presentation to 

presentation the neuron selected to learn may be selected over and over again or a variety 

of different neurons could win. Each of these presentation-learning cycles comprises an 

epoch. 

One particular problem that may be encountered is that of dead neurons. Dead 

neurons are those neurons whose initial state is such that they are further away from all 

the input sequences than any other neuron. Since the dead neuron will never be selected 

to learn it remains unchanged throughout the epoch. The final state of a dead neuron may 

communicate useful information about the distribution of input sequences if the initial 

states were chosen to contain some discernable bias. If neurons are initialized to random 

locations little information can be gained from the existence of dead neurons since they 

were almost certainly left out of the learning process due to being randomly assigned far 

from any of the input sequences. If however the initial locations of the neurons are all the 

same and in a neutral location then the existence of dead neurons indicates that the input 

sequence locations are so close together relative to the size of the weight space that the 

individual inputs appear equidistant. This results in the first neuron to be associated with 



 

10 

an input sequence winning when presented with all subsequent inputs and all other nodes 

becoming dead neurons. 

 The standard solution to the problem of dead neurons is the use of a conscience 

parameter [6]. The network conscience keeps a record of the ratio of wins to losses for 

each neuron and begins to artificially improve the chance of a neuron winning if it has 

lost during a high percentage of the input presentations.  This ensures that every neuron 

will be moved towards the inputs so that the maximum number of potential partitions is 

not artificially reduced. Typically the conscience parameter is an exponential function 

that ensures a win if a neuron loses 100% of the time. 

 A particular application of competitive neural networks is in the partitioning of 

samples into discrete sets. Such networks are called partitive neural network,s and they 

have been applied to a number of diverse problem domains [7] Partitive networks 

effectively partition the input space into n partitions where n is the number of neurons in 

the system.  

 Competitive neural networks form the basis of the KomPhy architecture while 

SOTA is based on Self Organizing Maps [8]. Both approaches are based on neurons 

being mapped into the input space and then migrating through successive applications of 

a learning rule until the average distances between the neurons and the inputs are 

minimized. Competitive neural networks are the oldest and simplest form of 

unsupervised neural network, while self organizing maps are a much more sophisticated 

approach which builds on the competitive aspects of the competitive neural network 

while introducing a number of new concepts such as neighborhood. The SOM 

architecture encodes the relationships between large numbers of nodes in topologies such 
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that each neuron has a neighborhood of adjacent neurons whose output it can cause to be 

enhanced or inhibited at different stages in the presentation-learning cycle. SOMs are 

capable of mapping the distribution of input vectors onto its node graph effectively 

reducing the dimensionality of the data in much the same way Multi-Dimensional Scaling 

(MDS) does.  

 SOTA organizes the graph linking the competitive neurons in the standard SOM 

framework into a bifurcating tree rather than the more usual lattice. The neurons then 

migrate and map the probability distribution of the input character sequences while 

maintaining a tree structure through the neuron links. SOTA is based on Kohonen's 

unsupervised neural network of self-organizing maps and on Fritzke's growing cell 

structures algorithm to construct phylogenetic trees [9]. 

Supervised neural networks (typically back propagation architectures) and other 

self organizing maps have been applied to protein classification as a precursor to gene 

expression analysis but not to phylogenetic reconstruction per se ([10, 11, 12, 13, 14]). 

The SOM approaches discussed in these papers, with the possible exception of [14] are 

adaptations of SOTA. 

Hierarchical neural networks [5], of which KomPhy could be considered an 

example, consist of multiple neural networks embedded into a graph.  The networks 

within the graph can be single neurons or complex neural architectures. Tree-structured 

neural architectures are a special type of hierarchical neural network that have been used 

extensively in principal component analysis (PCA) which has itself been used in gene 

expression clustering [15, 16]. Decision trees, hierarchies of experts, classifiers and 
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especially scene graph classifiers are typical applications for hierarchical neural networks 

[17]. 

 By developing another unsupervised neural architecture, which is simpler than 

SOTA, and comparing its performance to SOTA as well as to the standard fast 

phylogenetic algorithm Neighbor-Joining [1], the applicability of unsupervised neural 

networks to the domain of phylogenetics can be better understood. 
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2 Kohonen Competitive Phylogenetics (KomPhy) 

 

2.1 Approach 

The KomPhy architecture is a greedy clustering algorithm that uses the same 

framework as the quicksort sorting algorithm [19]. The partitioning function is a two 

neuron unsupervised competitive neural network. Sequences are mapped into real valued 

vectors which at each stage in the algorithm are segregated into two clusters. New neural 

networks are created as needed to partition each of these clusters into a further two 

partitions. The algorithm proceeds recursively until each partition contains only one or 

two sequences. Both of these cases are trivial since there is only one phylogenetic 

arrangement for one and two taxa. The resulting function call tree is the proposed 
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phylogenetic reconstruction. KomPhy could be described as a dynamic hierarchical 

network architecture though the component neural nets are typically heterogeneous and 

fixed in traditional hierarchical networks.  

Encoding of input sequences such that they can be operated on by the neural 

networks is of central importance since it is that representation which will define the 

topology of the solution space. Here DNA sequences are mapped into the real-valued 

weight space by representing each character as a point within the volume of a 

tetrahedron. The apices of the tetrahedron represent the four bases. This representation 

allows neuron weights to represent intermediary values between the normally discrete 

bases and to move smoothly within the solution space. The difference between the 

current state of a character in a weight vector and the corresponding character in an input 

vector is easily determined by looking at the Euclidean distance between the two within 

the tetrahedron. Using the Euclidian distance ensures that the bases are equidistant from 

one another and from the center of the volume.   

 

 

Figure 7: Representation of a character as a three component vector within the volume of a 
tetrahedron in which the apices are four nucleotide bases. 

 

Thymine  
(1.0, 0.0, 1.0) 

Guanine 
(1.0, 1.0, 0.0) 

 

Adenine 
(0.0, 0.0, 0.0) 

Cytosine 
(0.0, 1.0, 1.0) 
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Given the Euclidean distance between a character in the weight vector of a node 

and the corresponding character in a DNA sequence the total distance between the weight 

and the sequence can determined. The traditional Kohonen learning rule [20], in which 

the distance measure is the dot product of the two sequence vectors, was used in an initial 

version of KomPhy but Euclidean distance and phylogenetic distance metrics such as 

Jukes-Cantor [21], have also been applied successfully. More complex distance metrics 

designed specifically for nucleotide sequences (F84 [22] and the Tamura-Nei [23] 

metrics) were also implemented but involve taking the log of a negative when the 

distance is too large, this make them difficult to apply when two sequences are very 

different from one another, as is the case with the initial starting condition of the neuron 

weights. Further work, perhaps involving the use of a simple metric initially followed by 

a more complex one as the weights converge, needs to be done before F84 and 

Tanamura-Nei can be used reliably with KomPhy. 

All phylogenetic metrics were modified to operate on real-valued characters 

rather than the more usual discrete ones. The Euclidean distance is a close approximation 

to unweighted parsimony in a continuous solution space. The SOTA program infers 

distances between sequences by observing the ratios of character pairs at corresponding 

sites and encodes the input sequences as a vector of the resulting probabilities. 

Comparisons of Jukes-Cantor model correction and the Euclidean distance function as 

well as the results generated by SOTA are explored in the results section. 

A previous version of the algorithm performed random restarts of the initial 

neuron weights and ran the network successively with twice as many epochs as the 

previous iteration until two consecutive runs yielded the same partitioning. This process 



 

16 

would help to avoid local minima (of which phylogenetic tree space can have many [24]) 

and provided a dynamic criterion for deciding when to stop iteratively presenting each 

network with samples. A related technique common to neural networks was also tried in 

which the initial weights are set to two of the input taxa. The initial weights determined 

in these two ways were found to completely determine the resultant topology. 

Empirically, using neutral initial values for the network weights generated the same 

topology as the best of the randomly initialized weights. The neutral points were found 

by setting every character in the weight’s vectors to be the center point of the tetrahedron 

which defines base-pair space. This point is equidistant from all possible input vectors 

and so does not introduce an unnecessary bias on the initial relationship between weights 

and the sequences being analyzed.  

Since the weights are initialized to neutral locations, KomPhy does not generate 

any dead neurons during its tree reconstructions. When random weights were used, dead 

neurons occurred in a small but significant portion of the reconstructions. In those 

experiments where a conscience parameter was used to alleviate this problem, accuracy 

was degraded by 50 percent or more, even when no dead neurons were present. The lack 

of dead neurons when using neutral initial weights indicates that very little structure in 

the data (as little as one character difference) is sufficient for KomPhy to partition the 

sequences. 
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Figure 8: The KomPhy architecture. The set Si in the graph above is the input 
sequences. The figure to the left shows how the algorithm partitions the input 
recursively until the base cases are reached. S0 = (acg...), S1 = (tac...), S2 = (cgc...), 
S3 = (ggt...), S4 = (act...). 
 

 

Figure 9: Each partitioning neural network shown in figure 3 is a competitive network which maps 
the input sequence into an |Si| dimensional space (where |Si| is the length of the sequences).  The 
distance from each sequence in the sequence space to the weights in weight space is then calculated. 
The neuron with the weight vector closest to the sequence becomes identified with that sequence and 
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is moved closer to it in weight space by the learning rule (Equation. 1), bi is the bias for the ith weight. 
Biases are used to direct weight convergence, with a conscience parameter for example. Argmax  
returns the larger of its two arguments, i.e. the neuron which is most similar to the input. 
 

wwinner(t + 1) = wwinner(t) + α(S(t) - wwinner(t)) (1) 

Equation 1 shows the Kohonen learning rule [8] which is applied to the weights of the 

winning neuron and serves to move the neuron in weight space closer to the last input 

sequence.  
winner
w
r   is the vector of weights associated with the winning neuron. t  is the 

current time step. S
r

 is the input sequence and !  is the learning parameter. 
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Input:   a set of n sequences, S, with |Si| = k, 
a competitive neural network consisting of w weights, W, 
a function D(Wi,Sj) that returns the distance between Wi and Sj using 
some metric. 
a learning function L(Wi, Sj) as defined in Equation 1 above. 

 
Output:   w partitions where D(Wi, Sj) for all Sj members of Pi is less than   

D(Wi, Sp) for  
any Sp not a member of Pi. 

 
begin Partition( S ) 
 
if |S| < 3 then 
 base case 
 return; 
end 
 
while counter < epochs do 

  while j < k do 
   winner = argmax( foreach weight Wi do D(Wi, Sj) end ) 
   push(Pj, Wwinner) 
  end 
 
  foreach weight Wi 
   foreach  element v of Pi 
    L(W1, v) 
   end 
  end 
   
  counter ← counter + 1; 
 end 
 
 

 
 
foreach Sw do 
 Partition( Sw ) 
end 

 

Figure 10: Algorithm for the Partition function in KomPhy 
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2.2 Time Complexity 

The Quicksort framework makes the running time analysis easy since the 

partitioning step is linear in the number of characters in the sequence.  

In the following discussion n = |S|, m = |Si|, where S is a set of sequences, each of 

which is a set of characters. The worst-case running time occurs when the partitions, P, 

are unbalanced such that only one sequence is in P1 and |Si| - 1 are in P2. This leads to the 

internal nodes doing n - depth work for each partition or n + (n-1) + (n-2) +…+ (n - n 

+ 1) total partitioning cost, which is O(n2). In the best case each partition costs n/2depth or 

nlog(n) total cost. The running time is therefore dependent on the partition sizes at each 

step [25] If we assume the partition sizes are drawn from a uniform distribution, then the 

probability of a particular partition size is  p(|ni|≤2)=3/n for the trivial partition sizes (i.e. 

the recursion base cases) and p(|ni| = k) = 1/n, k = 3, 4, …, n - 1 for partitions which are 

large enough to be repartitioned. This observation yields the following recurrence 

relation: 
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Solving this recurrence relation yields an expected running time of O(nmlog(n)) for a 

uniform distribution of partition sizes [26]. There is still a constant-factor difference 
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between the expected running time and the lower bound on the running time. The running 

time then depends heavily on the depth of the tree being formed. 

 

 

Figure 11: Best and worst case tree structures for time complexity. The worst case tree results in 
O(n2m) running time while the best case running time is Ω(nmlogn). 
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3 Experimental Results 

3.1 Methodology 

Tree Generation 

KomPhy, SOTA, and Neighbor-Joining were run over numerous datasets, each of 

which consisted of 96 trees with the first tree having four taxa, the next five taxa, and so 

on until the 96th tree had 100 taxa. Two tree-generation models were used: Birth-Death 

and Uniform. Birth-Death trees are generally more symmetric (balanced) than uniform; 

this difference makes it possible to test the effect tree balance on KomPhy’s accuracy and 

running-time. Ultrametric birth-death trees were generated with Phylogen 1.0 [27], 

uniform trees, in which all topologies are equally likely, were generated with Component 

2.00a [28]. Phylogen was used with a simple birth-death process with a constant birth rate 

and death rate. The branch lengths of the birth-death trees ranged from 0.005 to 1.2. The 

branch lengths for uniform trees were drawn from a uniform distribution of values from 

0.0 to 1.0. Here branch length is defined to be the expected number of transitions per site 

in a DNA sequence. A branch length of 0.05 would indicate that five characters would be 

expected to change value in a sequence of 100 characters. 

Sequence Generation 

Character sequences were generated from trees with Seq-Gen 1.2.5 [29]. During 

the sequence generation process, branch lengths were scaled by 1.4, 1.2, 1.0, 0.8, 0.6, 0.2, 

0.1, and 0.05 to create differing sets of sequences. Sets of sequences were created with 

1,000 characters each in most cases. Sequences with 500 and 2,000 characters were also 

generated for comparison. All sequences were generated using the Jukes-Cantor model. 
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Accuracy Measure 

KomPhy, SOTA, and Neighbor-Joining were run over all data sets and the 

reconstructed trees compared to the model tree. Several difference measurements were 

considered, agreement subtree, the Nearest-Neighbor interchange metric, the partition 

metric, quartet dissimilarity measure, the triplet dissimilarity measure and the Robinson-

Foulds metric [32]. None of these methods deviated substantially from the Robinson-

Foulds distance given by the treedist program in Felsenstein’s Phylip 3.6 alpha suite [30], 

which was ultimately used to score the success of the algorithms.  Neither birth-death nor 

uniform trees can be considered to accurately represent the phylogenetic trees seen in 

nature, [31] however, they do provide some insight into the types of topologies these 

algorithms are able to recover.  

Experiment Platforms  

The serial implementation experiments were conducted on an Intel Pentium III 

running at 500 megahertz with 128 megabytes of RAM running Debian Linux using the 

GNU. Parallel experiments were performed on eight nodes of the Blackbear VA Linux 

cluster at the University of New Mexico’s Center for High-Performance Computing 

(HPC@UNM). Blackbear has 32 Pentium III processors running at 550 megahertz each 

with 500 megabytes of RAM per node. Nodes in the Blackbear system are interconnected 

through Myrinet. The GNU g++ compiler was used with optimization flags. 

Neighbor-joining Implementation 

The neighbor-joining program used was that found in Felsenstein’s Phylip 3.6 

alpha package [30]. Neighbor-joining was run with Jukes-Cantor model correction.  
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3.2 Results 

Model Correction 

The accuracy and speed of KomPhy relative to SOTA and neighbor-joining was 

evaluated over various average branch lengths, generating tree topologies, and model 

corrections. KomPhy was run using a Euclidean distance metric and one based on the 

Jukes-Cantor model correction. Overall the Jukes-Cantor metric showed minimal 

improvement over the Euclidean metric and in many cases the Euclidean metric actually 

resulted in shorter Robinson-Foulds distances. Running time was not adversely changed 

by using the Jukes-Cantor model correction. 

 

Comparison of KomPhy over Different Tree Topologies 

Five pairs of trees with 64, 128, 256, 512, and 1,024 taxa each were designed such 

that one tree in the pair (tree A) has depth equal to the number of taxa (a caterpillar tree) 

and the second tree (tree B) has depth equal to log2(number of taxa) (complete balanced 

tree). Tree A in each pair is the deepest tree possible while tree B is the shallowest. 

Branch length was fixed at 6 changes per hundred characters. These two trees are at the 

extremes of topology and should provide some insight into the influence of topology on 
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running time and accuracy.   

 

Figure 12: Best (A) and Worst Case (B) Trees for KomPhy running-time. 

 

 As suggested by the analysis in Section 2.2, running time was consistently larger 

for deeper trees in the idealized cases above. However, the absolute difference in running 

time was small: for 64 taxa the difference in running time was 3%, for 128 it was 4%. 

Figure 14 plots the running times for uniform and birth-death trees. By looking at the 

reconstructed tree produced by KomPhy from the worst model tree it can be seen that the 

fast running time was the result of KomPhy flattening the tree and making it more 

symmetric. This bias in KomPhy’s reconstruction serves to ensure that the worst-case 

running time is unlikely to occur since KomPhy is biased towards reconstructing trees so 

that they are more balanced than they should be. 
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Comparison of KomPhy's Running Time over 

Birth-Death and Uniform Trees
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Figure 13: Little difference between the running time for birth-death trees and uniform trees is 
discernable. 

 As expected, the accuracy of the KomPhy algorithm is highly dependent on the 

degree to which the generating trees topology deviated from the symmetric. A full tree 

(completely balanced) was reconstructed with a RF error of 0.09, the tree of maximal 

depth was reconstructed with an RF error of 0.42. This relationship is further borne out 

by comparing accuracy of KomPhy when it reconstructs birth-death trees vs. uniform 

trees. 
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KomPhy (Euclidian) Error Rate Comparison between 

Unform and Birth-Death Trees (scaled by 0.2)
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Figure 14: Disparity between accuracy of uniform and birth-death tree reconstruction. Error % is 
the running average of three adjacent data points. The random reconstruction error rate was 
determined by taking pairs of uniform trees and birth-death trees and finding the RF distance 
between them then averaging the result.  Birth-death random reconstruction has a lower RF distance 
because birth-death trees are more confined in their topology than uniform trees are.  

 
KomPhy is much more accurate when applied to Birth-Death trees than when applied to 

Uniform trees. The dashed lines indicate the RF error when two random uniform or birth-

death trees are compared. This provides some baseline for comparing KomPhy’s 

reconstruction against that which chance alone could have produced. Since Birth-Death 

trees are more confined and less variable than uniform trees random reconstruction tends 

to be more successful -- i.e. birth-death trees are easier to reconstruct. Even when taking 

that into account KomPhy does significantly better on birth-death trees than on uniform 

trees. 
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Figure 15: Tree A is a typical birth-death tree, tree B is a typical uniform tree.  Tree A was recovered 
by KomPhy with an RF error of 7%, tree B was recovered with an RF error of 30%. 
 

Comparison with other Reconstruction Algorithms 

Two other reconstruction algorithms were chosen for comparison. SOTA is based on Self 

Organizing Maps which, as was discussed in Section 1.1, is the only other neural network 

approach to phylogenetic reconstruction. Neighbor-joining was selected for comparison 

because it is probably the most popular fast reconstruction algorithm in use. Sequence 

Length Requirements for Phylogenetic Methods, ]. 

A B 
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KomPhy, SOTA, and NJ Running Average Error 

over Birth-Death Trees Scaled by 0.2
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Figure 16: Comparison of birth-death tree reconstruction accuracy for Neighbor-Joining, SOTA, 
and KomPhy. Error % is the running average of three adjacent data points.  For this particular run 
SOTA’s reconstruction of the trees with 13, 14, 46, 81, 95, 96, 97, and 99 taxa did not converge on a 
topology within 3,000 cycles (SOTA typically converges in less than 200 cycles). Those reconstruction 
attempts were left out of the data set and the average RF for the nearest three reconstruction 
attempts were used to fill in the gap. 

 
Neighbor-joining clearly produces the most accurate reconstructions, not only in this 

case, but also for uniform trees,  KomPhy’s mean RF distance over these 100 trees is 

about 5% less than NJ’s mean RF distance. SOTA’s mean RF distance is the largest with 

an error rate of around 20%.  
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KomPhy (Euclidian) and SOTA run on Uniform Trees (scaled by 

0.2) and with Sequences Generated using Jukes-Cantor
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Figure 17: Comparison of uniform tree reconstruction accuracy for SOTA, and KomPhy. Error % is 
the running average of three adjacent data points. 

 
Neighbor-joining was found to be very accurate on uniform trees: its RF distance never 

rises above 0.02. Both neural network approaches do very poorly when reconstructing 

uniform trees, with KomPhy being the less accurate of the two. Clearly symmetric trees 

match the clustering bias of KomPhy and SOM to a much greater degree than asymmetric 

trees do. This is not surprising since both approaches effectively reduce the 

dimensionality of their inputs and so are performing an averaging process.  
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Branch Lengths and Statistical Consistency 

KomPhy with Euclidian Distance Measure over Scaled Birth-Death Trees 
(Scaled from random trees with an averge branch length of .3)
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Figure 18: Reconstruction of trees by KomPhy with scaled branch lengths and varying with various 
sequence lengths. Average Robinson-Foulds error for 0.2 birth-death trees: KomPhy: 11%. 

 
Scaling the branch lengths of Birth-Death trees resulted in marked improvement in 

KomPhy’s accuracy. For trees in which 30% of the characters on average were expected 

to change per branch, a full third of the edges placed by KomPhy in the reconstructed tree 

were incorrect. When the expected number of changes per sequence per branch was 

reduced to 0.06, the number of misclassified edges was halved.  

The normalized RF distance, over all 96 trees and using the Euclidean metric, was 

0.11. Doubling the number of characters to 2000 resulted in an improved score of 0.10. 

Surprisingly, halving the number of characters also resulted in an improved score of 0.10. 

Nine-hundred and ninety-four sets of sequences with lengths from 4 to 1,000 were 

generated from and given to KomPhy to reconstruct. No Robinson-Foulds value for all 

these trees was more than 0.03 apart for all sequence lengths. This 0.03 variation could be 

Scale; Characters 
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explained by variations in the sequences introduced by Seq-gen, since no trend in RF 

distances were observed as a function of sequence length. Some sequences with as few as 

104 characters were observed to have better RF distances than reconstructions over the 

same tree with 2,000 characters. There is no indication therefore that KomPhy is 

statistically consistent. 

 

Model Correction  

Two distance functions were found to work well in the KomPhy framework: 

Euclidean distance and the Jukes-Cantor distance. The following charts show the relative 

error rates for the two distances when applied to reconstructing birth-death and uniform 

trees. 
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Figure 19: Comparison of the Euclidean and Jukes-Cantor distances when used by KomPhy to 
reconstruct birth-death trees. 
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Surprisingly the Euclidean distance outperforms the Jukes-Cantor distance when applied 

by KomPhy even though all the trees used in these experiments were generated with the 

Jukes-Cantor model. With uniform trees, on the other hand, using the Jukes-Cantor 

distance function generates slightly more accurate trees using the Euclidean distance. 

Jukes-Cantor Model Correction for Uniform Trees
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Figure 20: Comparison of the Euclidean and Jukes-Cantor distance when used by KomPhy to 
reconstruct birth-death trees. 
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Comparison of Running Times for SOTA, KomPhy and Neighbor-Joining 
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Figure 21: Comparison of SOTA and KomPhy total running times. Neighbor-joining reconstructed 
trees much more quickly than either KomPhy or SOTA. Neighbor-joining was faster than SOTA and 
KomPhy for all trees examined. 
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Figure 22: Comparison of per taxa running time between KomPhy and SOTA. A hypothetical 
mnlog(n) algorithm with a cost for m of two seconds is plotted for comparison. 
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Experimental Results Summary 
 

For birth-death trees KomPhy was found to produce reconstructions with an 

average error rate of 10% which is about 5% more accurate than SOTA and about 5% 

less accurate than neighbor-joining. For uniform trees SOTA was more accurate than 

KomPhy by 2-3%, and neighbor-joining was more accurate by about 30%. Neighbor-

joining was found to perform very well on the uniform trees presented to it with error 

rates never rising above 2 or 3 percent. Both neural network architectures on the other 

hand produced very poor reconstructions with error rates of between 25 and 35%. 

KomPhy produced the most accurate reconstructions when branch lengths did not exceed 

24 changes per 100 characters with the error rate rising to between 25 and 30% when 

maximum branch lengths were allowed to exceed 1.0 (Figure 19). 

Empirically the difference between the running-time over worst case and best 

case trees with up to 1024 taxa was found to be only 10%. KomPhy’s has an aversion to 

creating trees with imbalanced topologies that result in a degradation of its running time. 
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4 Parallel Implementation 

4.1 Approach 

The presentation step of the KomPhy algorithm is amenable to parallelization 

since the distance between sequences and weights is independent throughout if the 

learning step is fully decoupled by using batch learning. Batch learning is functionally 

equivalent to interlaced learning, but allows an entire epoch of presentations to occur 

KomPhy Timing Profile
(Average over 10 samples between 5 and 95 Taxa)

Other

0%

Kohonen 

Learning

13%

Presentation 

of Sequences

87%

 

Figure 13: Time spent in calculating distances from weights to sequences (presentation of sequences), 
in applying the learning function (Kohonen learning), and in all other operations (overhead) 
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before the need to update the weight values (which must agree across all processors). 

Parallelizing the learning step was considered but every sequence in the system effects 

the change in weights. To synchronize the changes would cost more in communication 

than would be saved in local computation. KomPhy was profiled in order to discover 

whether parallelizing the presentation step would result in significant gains. Profiling 

showed that 87% of the time KomPhy was calculating distances between weights and 

sequences. (This percentage was the average over 96 runs on trees having between 4 and 

100 taxa with KomPhy configured to iterate over 500 epochs.) Parallelization of 

sequence presentation would therefore have a significant impact on overall running time. 

Presentation time was also determined to grow faster as taxa were added than learning or 

overhead. 
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Figure 24: Time cost growth for presentation, learning, and overhead in the serial version as an 
incentive to parallelize the presentation step. 
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The parallel implementation of KomPhy makes two changes to the serial version. First, 

the for loop which cycles through the presentation of sequences to the neural network and 

calculates the winning neuron in each case is modified so that a sequence is only 

presented if the sequence number modulus the number of processors is equal to the local 

processor ID. This effectively divides the work such that each processor does roughly n/p 

work where n is the number of sequences and p is the number of processors. Once each 

processor has calculated which neuron is the winner of each sequence, a new function 

called synch_partitions is called. This function packages the association of winning 

weight to sequence with an integer paring function. This is accomplished with the MPI 

function mpi_allgatherv [33]. Once all processors have the global partitioning for the 

current epoch the Kohonen learning algorithm is run just as in the serial version.  Batch 

learning is used in order to achieve the separation of sequence presentation and learning 

required to parallelize the presentation step.  

This approach has the benefit that it does not disturb the serial implementation at 

all. The division of sequences to processors assigns all the work to processor 0 in the 

serial case and can simply skip the synch_partitions step if the program is not running 

in parallel.  
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Input:  a local set, P, of partitions  

 a set, N, of processors 

 assume an integer pairing function pair( x, y ) 

 assume an integer pair reversal function unpair(z)  

Output: a global set, Q, of partitions 

begin synch_partitions( P ) 

  i = Nthis 

  j = |P| 

  foreach sequence j in P do 

   send_arrayij  ← pair( Pj, Sk ) 

end 

mpi_allgatherv( send_array, receive_array ) 

foreach element m of receive_array do 

<Qi, St> = unpair( receive_arraym) 

push( Qi, St )  

end 

return Q; 

end  

 

Figure 25: Algorithm for synchronizing local partitions, where the sequences in the local 
partition are those which have modulus of their index equal to the processor index.  



 

40 

4.2 Results 

A significant reduction in running time was observed after parallelization. 

Running time over a single 97 taxa tree for the presentation step was reduced from 48 

seconds on a single processor to 28 seconds on two processors, a 42% reduction in 

running time. Overall running time was reduced from 60 seconds to 40 seconds, a 30% 

reduction. Running KomPhy on 3 processors reduced the presentation time to 10 seconds 

for an 80% reduction over the serial case. Total running time was reduced to 20 seconds 

or a 66% reduction. 
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Figure 26: Parallel running-time of presentation step, overall reduction in running time, and 
eventual increase in communication overhead. The data used to create this chart came from a single 
run of the parallel implementation.  
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5 Summary and Conclusions 

 In this thesis, a new unsupervised neural network approach to phylogenetic 

reconstruction was described and analyzed. Comparisons were made between the new 

approach and existing methods including SOTA, which is the closest existing algorithm 

to KomPhy, and Neighbor-Joining, which is the most commonly used fast reconstruction 

algorithm. The running time of KomPhy was analyzed and found to be quadratic in the 

worst case but O(nlogn) in the expected case. SOTA is described as a linear algorithm but 

experimentation demonstrates KomPhy to be much faster (at least for trees with less than 

100 taxa) and in the case of birth-death trees more accurate. 

 Komphy was not found to be accurate enough to compete with neighbor-joining 

(O(n3)) when applied to uniform or birth-death trees. KomPhy’s failure in this regard may 

indicate that competitive neural network approaches in general may not be as well suited 

to phylogenetic reconstruction as direct algorithms are. This is further supported by the 

relative similarity between the accuracy of SOTA and KomPhy despite their quite 

different representations of the search space and the differing frameworks within which 

the networks were embedded. 

 This is not to say that the continued study of competitive neural approaches may 

not bear fruit in the future but it does seem to suggest that the averaging effect of 

mapping nodes onto a solution space may be insufficient to guarantee acceptable 

reconstructions. The individual paths weights take through weight space are susceptible 

to local minima and to the relative movements of other neurons. The comparison to 

neighbor-joining may be instructive since in many ways neighbor-joining is the inverse 

strategy to KomPhy and SOTA. Whereas competitive neural networks and self 
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organizing maps are top-down algorithms that iteratively move from the more general 

solution to more particular ones, neighbor-joining starts by creating an initial partition of 

just two taxa and then builds the general structure from the successive addition of single 

taxa. This bottom up approach seems to do better than KomPhy because errors near the 

root may propagate throughout the all subtrees whereas errors made near the leaves are 

localized. 
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