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Central Place Foraging

• Central Place Foraging (CPF) is the discovery, collection, and transportation
of targets to a location. A central-place foraging algorithm (CPFA) solves this
task.

• This is a canonical task for teams of robots since it combines so many
common robot subtasks (Winfield [1])

• Applications include automated agriculture, environmental sampling,
planetary exploration including in-situ resource utilisation, robotic mining,
etc, etc.

• This is also a fundamental task in biological systems such as the immune
system and ant colonies.

• In this study we analyse complete collection.
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Central Place Foraging

• Pogonomyrmex sp. (Desert
Harvester ants). Collect
seeds.

• Swarmie robots generalise
the central place foraging
task. Allow us to design and
test algorithms.

• We have built 100 Swarmies.
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NASA Living off the Land - Extended Missions

• NASA has developed fuel processing
and mining robots for use on the
Moon and Mars.

• Through the NASA Swarmathon
Competition [2] we solicited more
than 100 different CPFAs over 4
years from 40 universities.
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NASA Swarmathon

• NASA has developed fuel processing
and mining robots for use on the
Moon and Mars.

• Through the NASA Swarmathon
Competition [2] we solicited more
than 100 different CPFAs over 4
years from 40 universities.

• We can roughly divide the resulting
CPFAs into four categories:
? Recruitment1

? Random Ballistic
? Rotating Spoke
? Spiral Pattern
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1Surprisingly, information sharing algorithms have not done well so far.
5 / 29



Our Goal: We want proof!

Our observations in real robots and simulations give a general efficiency ordering1:

1. Spiral Algorithms
2. Rotating Spoke
3. Stochastic Walks

There are many confounding factors in experiments with real robots. Maybe
people who coded spiral search happened to be better at localisation and pick and
place on average, etc.

We want a formal explanation of the ordering!
No one has ever performed a complexity analysis of ANY CPFA
1Fricke IROS 2016 [3], Ackerman ICRA 2018, [2], and Qi ICRA 2019 [4]
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Randomised Ballistic Algorithms

• Random algorithms are diverse but in
general they do not guarantee complete
coverage and allow for areas to be revisited.

• We have repeatedly found that the best
stochastic CPFAs use ballistic motion.

• Robots move away from the central
collection zone in a random direction.

• Motion is ballistic and is based on Levin
[5].

• Alternatives include Brownian motion and
Lévy walks. We find that CPFA Lévy
walks converge to Ballistic motion. [6].
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Spoke Algorithms

• Southwest Indian Polytechnic Institute:
Third place year 1, First place year 2,
Second place year 3.

• Robots divide the search space into equal
regions.

• Minimises collisions between robots.
• Ensures complete coverage.
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Spiral Algorithms

• Durham Technical College: Year 3 winner,
Cabrillo College: Year 4 winner.

• Spirals can have different geometries, but
as long as they are space filling the same
asymptotic performance.

• Complete coverage no revisiting sites.
• Single searcher case is currently used by

the US Coast Guard for search and rescue.
• See Fricke, IROS, 2016 [3] for Square

Spiral.
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The Omniscient CPFA

For comparison we define an ideal CPFA that knows where all the targets are.

• We examine the time to complete collection. Therefore the omniscient
algorithm’s total cost is the sum of the time taken to retrieve all the targets,
i.e. the total transport time, Tt.

• R is the radius of the foraging area.
• f is the number of targets, N is the number of robots.
• s is the robots’ average speed.
• So the Omniscient CPFA has zero search cost, denoted Ts.
• Two trips per target, f , and because the search area is circular we have 2

3R;
×2 for trips is 4R

3 , divided by the number of robots, N , and speed, s.
• Therefore, Tt =

4Rf
3Ns
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The Price of Ignorance

Given the Omniscient CPFA we can define the Price of Ignorance metric, χ(A) to
be the ratio of the time algorithm A takes to collect all targets to the Omniscient
CPFA’s time.

χ(A) =
Ttot(A)

4Rf /(3Ns) =
3NsTtot(A)

4Rf (1)

Thus, the closer χ(A) is to 1 the more efficient A is.

Unlike the Omniscient CPFA real algorithms must have their robots search for
targets. We therefore defined r to be the range at which a robot can detect a
target.
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Theorems: Random Spoke CPFAs

Theorem 1 (Random CPFA’s Price of Ignorance)

1. Ttot ∈ O
(

4πR2f
3Nrs − 2R

3s

)
2. χ(A) ∈ O

(
2πR
rf log

(2πR
3r

)
+ 1

2

)
(Coupon Collector).

3. Target depletion increases the price of ignorance: χ(A) ∈ O
(
(2π ln 2)NR

r + 1
2

)
.

4. But when site fidelity (self-recruitment) is introduced the cost is reduced again:
χ(A) ∈ O

(
πR
r − N

2f

)
.

Site-fidelity gives you many of the advantages of pheromone recruitment
without some of the downsides. Desert harvester ants seem to use it instead of
pheromones.
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Theorems: Rotating Spoke CPFAs

The rotating spoke algorithm sweeps segments of a disk resulting in a price of
ignorance that does not depend on N , but only on the radius of the foraging area,
the number of clusters and the robot sensor range.

Theorem 2 (Spoke CPFA’s Price of Ignorance)

1. Ttot ∈ O
(
πR2

Nrs + 4Rf
3Ns

)
2. In expectation χ(A) ∈ O

(
3πR
4rf + 1

)

14 / 29



Theorems: Spiral CPFAs

Expected transport time: Tt ≤ 2
√

2Rf
3Ns

Theorem 3 (Spiral CPFAs Price of Ignorance)

1. Ttot ∈ Θ
(

πR2
√

2Nrs −
2R
3s + 4

√
2Rf

3Ns

)
2. χ(A) ∈ Θ

(√
2 − N

2f + 3πR
4
√

2rf

)
.
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Testing the Analysis: Random CPFA
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Testing the Analysis: Spiral CPFA
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Testing the Analysis: Spiral CPFA
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Testing the Analysis: Spiral CPFA
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Testing the Analysis: Spiral CPFA
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Conclusions

• For the first time we have a formal understanding of some common CPFAs.

• Simulations validate the theoretical bounds.
• The performance rankings for 100 m foraging arena from theory are:

1. Spiral CPFAs (4×Perfect)
2. Spoke CPFAs (10×Perfect)
3. Random CPFAs (100×Perfect)

Which is in alignment with the NASA Swarmathon competition results.
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Conclusions and Future Work

• See our paper for the full proofs and
simulation details. We would love to see
improvements on our random and spoke
bounds.

• We need algorithmic complexity analysis of
information sharing CPFAs. That they are
sub-optimal is entirely based on empirical
work.

• A way to escape the bounds given here is
to introduce heterogeneous robot teams.
We have an ICRA submission analysing
that situation in review now.
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Conclusions and Future Work

• Why do desert harvester ants use random
ballistic search when it is inefficient?

• Our spoke results suggest that by rotating
by a very irrational number such as the
golden ratio you can improve asymptotic
efficiency.
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Thank you
Questions?
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Information Sharing

Strategies that relied on communication tended to do poorly.

• Balancing when to respond to recruitment signals vs exploring is a classic
explore/exploit trade-off. One that is further complicated by stochastic
environments and noisy sensors.

• None of the CPFAs that used recruitment performed well in the competition
over its 4 years.

• A recruitment algorithm developed in our own lab that does perform
relatively well relied on offline learning to estimate the the optimal trade-off
for each target distribution (Hecker and Moses, Swarm Int., 2015[8]).

• There is one kind of recruitment always helps performance: self recruitment or
site fidelity. Site fidelity is implicit in the spoke and spiral algorithms since
they return to the place their pattern was interrupted by finding a target.

For a formal treatment of misinformation costs see Pitonakova et al. Swarm Int.
2018 [9].

29 / 29



Information Sharing

Strategies that relied on communication tended to do poorly.

• Balancing when to respond to recruitment signals vs exploring is a classic
explore/exploit trade-off. One that is further complicated by stochastic
environments and noisy sensors.

• None of the CPFAs that used recruitment performed well in the competition
over its 4 years.

• A recruitment algorithm developed in our own lab that does perform
relatively well relied on offline learning to estimate the the optimal trade-off
for each target distribution (Hecker and Moses, Swarm Int., 2015[8]).

• There is one kind of recruitment always helps performance: self recruitment or
site fidelity. Site fidelity is implicit in the spoke and spiral algorithms since
they return to the place their pattern was interrupted by finding a target.

For a formal treatment of misinformation costs see Pitonakova et al. Swarm Int.
2018 [9].

29 / 29



Information Sharing

Strategies that relied on communication tended to do poorly.

• Balancing when to respond to recruitment signals vs exploring is a classic
explore/exploit trade-off. One that is further complicated by stochastic
environments and noisy sensors.

• None of the CPFAs that used recruitment performed well in the competition
over its 4 years.

• A recruitment algorithm developed in our own lab that does perform
relatively well relied on offline learning to estimate the the optimal trade-off
for each target distribution (Hecker and Moses, Swarm Int., 2015[8]).

• There is one kind of recruitment always helps performance: self recruitment or
site fidelity. Site fidelity is implicit in the spoke and spiral algorithms since
they return to the place their pattern was interrupted by finding a target.

For a formal treatment of misinformation costs see Pitonakova et al. Swarm Int.
2018 [9].

29 / 29



Information Sharing

Strategies that relied on communication tended to do poorly.

• Balancing when to respond to recruitment signals vs exploring is a classic
explore/exploit trade-off. One that is further complicated by stochastic
environments and noisy sensors.

• None of the CPFAs that used recruitment performed well in the competition
over its 4 years.

• A recruitment algorithm developed in our own lab that does perform
relatively well relied on offline learning to estimate the the optimal trade-off
for each target distribution (Hecker and Moses, Swarm Int., 2015[8]).

• There is one kind of recruitment always helps performance: self recruitment or
site fidelity. Site fidelity is implicit in the spoke and spiral algorithms since
they return to the place their pattern was interrupted by finding a target.

For a formal treatment of misinformation costs see Pitonakova et al. Swarm Int.
2018 [9].

29 / 29


	fd@rm@0: 
	fd@rm@1: 
	fd@rm@2: 


