
Proof that the lognormal PDF is heavier tailed than the gamma PDF.
Let f(x) be the gamma PDF and g(x) be the lognormal PDF.
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Subtracting log(g(x)) from log(f(x)):
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Expanding the quadratic and combining constants:
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Because the negative linear term dominates the highest order positive quadratic
logarithmic term:
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Which implies that f(x) ∈ o(g(x)) and therefore f(x) is heavier tailed than
g(x). QED.
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